Math, asked by Yuseong, 1 month ago

The value of \theta [0° < \theta < 90°] for with \sf {\dfrac {\cos \; \theta}{1-\sin \theta} + \dfrac {\cos \; \theta}{1+\sin \theta} = 4} is a) 45° b) 60° c) 30° d) None of these​

Answers

Answered by Clαrissα
27

Given :

  • \sf {\dfrac {\cos \; \theta}{1-\sin \theta} + \dfrac {\cos \; \theta}{1+\sin \theta} = 4}

To calculate :

  • Value of \theta.

Solution :

According to the question,

\twoheadrightarrow \sf {\dfrac {\cos \; \theta}{1-\sin \theta} + \dfrac {\cos \; \theta}{1+\sin \theta} = 4}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {\dfrac {\cos \; \theta(1 + \sin \; \theta) + cos \; \theta(1 - sin \; \theta)}{(1-\sin \theta)(1+\sin \theta)}= 4}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {\dfrac {\cos \; \theta(1 + \sin \; \theta + 1 -\sin \; \theta) }{(1-\sin \theta)(1+\sin \theta)}= 4}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {\dfrac {\cos \; \theta(1 + 1 ) }{(1-\sin \theta)(1+\sin \theta)}= 4}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {\dfrac {\cos \; \theta(2) }{1 - \sin^2\theta}= 4}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {\dfrac {2\cos \; \theta }{cos^2 \;\theta}= 4}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {\dfrac {2 }{cos \; \theta}= 4}

By cross multiplication,

\twoheadrightarrow \sf {2(1)= 4cos\; \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {2= 4cos \;  \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {\dfrac{2}{4}= cos \; \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {\dfrac{1}{2}= cos \; \theta}

⠀⠀⠀⠀⠀⠀

  • Cos 60° = 1/2 , So, ⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\twoheadrightarrow \sf {cos \;60^\circ= cos \; \theta}

Therefore,

\dashrightarrow \boxed{\bf {60^\circ=  \theta}}

Henceforth, the value of \theta is 60°. Option B) is correct.

Answered by NewGeneEinstein
22

Question:-

\sf The\: value\: of\: \theta \left[0° \lt \theta \lt 90°\right] \:for \:which, \\ \sf {\dfrac {\cos \; \theta}{1-\sin \theta} + \dfrac {\cos \; \theta}{1+\sin \theta} = 4}\:is

\bigcirc\sf 45°

\bigodot\bf 60°

\bigcirc\sf 30°

\bigcirc\sf NOTA

Solution:-

\\ \sf\longmapsto \dfrac{cos\Theta}{1-sin\Theta}+\dfrac{cos\Theta}{1+sin\Theta}=4

\\ \sf\longmapsto \dfrac{cos\Theta+cos\Theta sin\Theta +cos\Theta-cos\Theta sin\Theta}{(1-sin\Theta)(1+sin\Theta)}=4

\\ \sf\longmapsto \dfrac{cos\Theta+cos\Theta+cos\Theta sin\Theta-cos\Theta sin\Theta}{(1)^2-(sin\Theta)^2}=4

\\ \sf\longmapsto \dfrac{2cos\Theta}{1-sin^2\Theta}=4

We know

\boxed{\sf 1-sin^2\Theta=cos^2\Theta}

\\ \sf\longmapsto \dfrac{\cancel{2cos\Theta}}{\cancel{cos^2\Theta}}=4

\\ \sf\longmapsto \dfrac{2}{cos\Theta}=4

  • Cancel 2 from both sides

\\ \sf\longmapsto \dfrac{1}{cos\Theta}=2

\\ \sf\longmapsto 2cos\Theta=1

\\ \sf\longmapsto cos\Theta=\dfrac{1}{2}

\boxed{\sf cos60°=\dfrac{1}{2}}

\\ \sf\longmapsto cos\Theta=cos60°

  • Cancelling cos

\\ \sf\longmapsto \Theta=60°

Option b is correct

Similar questions