Math, asked by yashica4027, 5 months ago

The value of the first term of a G.P if its sum of three numbers is 7 and their
product is 8.* find the gp.

Answers

Answered by VishnuPriya2801
81

Answer:-

Given:

Sum of three terms in a GP = 7

Product of the numbers = 8

Let the three numbers be a/r , a , ar where a is the first term and r is the common ratio.

So,

a/r + a + ar = 7 -- equation (1)

And,

⟹ (a/r) * a * ar = 8

⟹ a³ = 8

⟹ a = ³√8

⟹ a = 2

Substitute the value a in equation (1).

⟹ 2/r + 2 + 2r = 7

⟹ (2 + 2r + 2r²)/r = 7

⟹ 2 + 2r + 2r² = 7r

⟹ 2r² + 2r - 7r + 2 = 0

⟹ 2r² - 5r + 2 = 0

⟹ 2r² - 4r - r + 2 = 0

⟹ 2r(r - 2) - 1 (r - 2) = 0

⟹ (2r - 1)(r - 2) = 0

★ 2r - 1 = 0

⟹ 2r = 1

⟹ r = 1/2

★ r - 2 = 0

⟹ r = 2

If r = 1/2 ;

  • a/r = 2/(1/2) = 2 * 2 = 4
  • a = 2
  • ar = 2 * 1/2 = 1

If r = 2 ;

  • a/r = 2/2 = 1
  • a = 2
  • ar = 2 * 2 = 4

Required GP is 4 , 2 , 1 or 1 , 2 , 4.

Answered by saiharishmn
124

 {\huge{ \boxed{ \tt{ \underline{question}}}}}

 \cr \tt \underline{The \:  value \:  of  \: the \:  first  \: term  \: of  \: a \:  G.P \:  if  \: its  \: sum} \\   \cr \tt\underline{ of \:  three  \: numbers \:  is  \: 7 and  \: their</p><p>product \:  is 8. \: } \\  \cr \tt \underline{ find \:  the \:  gp.}

{ \huge{ \boxed{ \tt{ \underline{given}}}}}

 \\  \tt{Let  \: the  \: three \:  numbers \:  be  \:  \frac{a}{r}  \:  ,a, \:  ar  \: } \\  \tt{where  \: a  \: is \:  the \:  first}

 \tt{term  \: and \:  r  \: is \:  the \:  common \:  ratio.} \\  \\ </p><p></p><p> \tt{So,} \\  \\ </p><p></p><p>  \tt{=  \frac{a}{r} + a + ar = 7 -- equation (1)} \\  \\ </p><p></p><p> \tt{And,} \\  \\ </p><p></p><p> \tt{( \frac{a}{r} )  \times  a  \times ar = 8} \\  \\ </p><p></p><p> \tt{ {a}^{3}  = 8} \\  \\ </p><p></p><p> \tt{= a =  \sqrt[3]{8} } \\  \\ </p><p></p><p> \tt{ a = 2}

 \tt{Substitute  \: the \:  value \:  a  \: in  \: equation  \: (1).}

 \tt{ \frac{2}{r}  + 2 + 2r = 7} \\  \\ </p><p></p><p> \tt{= \frac{(2 + 2r + 2r)}{r} = 7} \\  \\ </p><p></p><p> \tt{2 + 2r + 2r = 7r} \\  \\ </p><p></p><p> \tt{ {2r}^{2} + 2r  - 7r + 2 = 0} \\  \\ </p><p></p><p> \tt{-  {2r}^{2}  - 5r + 2 = 0} \\  \\ </p><p></p><p> \tt{  {2r}^{2}  - 4r - r+ 2 = 0} \\  \\ </p><p></p><p> \tt{2r(r- 2)-1 (r- 2) = 0} \\  \\ </p><p></p><p> \tt{(2r - 1)(r - 2) = 0} \\  \\ </p><p></p><p>  \tt{2r - 1= 0} \\  \\ </p><p></p><p> \tt{ 2r = 1} \\  \\ </p><p></p><p> \tt{r =  \frac{1}{2}} \\  \\ </p><p></p><p> \tt{r- 2 = 0} \\  \\ </p><p></p><p> \tt{r= 2}

 \tt{ \frac{a}{r}  =  \frac{2}{ \frac{1}{2} } = 2  \times  2 = 4} \\  \\ </p><p></p><p> \tt{ a = 2} \\  \\ </p><p></p><p> \tt{ar = 2 \times  \frac{1}{2} = 1} \\  \\ </p><p></p><p> \tt{If r = 2;} \\  \\ </p><p></p><p> \tt{ \frac{a}{r}  =  \frac{2}{2} = 1} \\  \\ </p><p></p><p> \tt{a = 2} \\  \\ </p><p></p><p> \tt{ar = 2  \times 2 = 4} \\  \\ </p><p></p><p> \tt{Required  \: GP \:  is \:  4, 2,1 or 1, 2, 4.}

Similar questions