The value of the flux of the electric field is zero over all the closed surfaces in a region.
(a) The electric field is necessarily zero everywhere in the region
(b) The charge density is necessarily zero everywhere in the region
(c) It is possible that the electric field is zero everywhere in the region
(d) It is possible that the charge density is nonzero at some points in the region.
a
Answers
Answer:
Answer:
< html > < head > < style > body { background:linear-gradient(100deg,purple,blue, green,lime,yellow); } div{ box-shadow:0px 0px 20px #000; width:250px; height:auto; position:relative; margin:100px auto; background:#fff; border-radius:10px; font-family:Verdana; color:#333; background-color:black; } p{ padding:50px; padding-top:10px; text-align:justify; color:gold; } h1{ background:#b71540; display:inline-block; color:#fff; padding:5px 25px; position:relative; left:-30px; border-bottom-left-radius:5px; } h1:before{ position:absolute; content:''; width:50px; height:50px; background:#b71540; top:20px; left:10px; transform:rotate(45deg); z-index:-1; } < /style > < /head > < body > < br > y = 3kx - 4 If we compare it with standard form y = mx + c where m is slope we get slope of line (1) is m1 = 3k And Similarly for other equation (2k - 1)x - (8k - 1)y - 6 = 0 ⇒ ( 8k - 1 )y = (2k - 1)x - 6 ⇒ y = ( 2k-1 )x / ( 8k - 1 ) - ( 6/(8k-1) ) If we compare it with standard form y = mx + c where m is slope we get slope of line (2) is m2 = ( 2k-1 ) / ( 8k - 1 ) IF line 1 and line 2 is perpendicular to each other then m1 = -1/m2 Putting the values we get 3k = - ( 8k - 1 ) / ( 2k-1 ) multiplying by 2k -1 on both sides we get 3k(2k - 1) = - (8k - 1) 6k² - 3k = - 8k + 1 6k² - 3k + 8k - 1 = 0 6k² + 5k - 1 = 0 6k² + 6k - k -1 = 0 6k(k + 1) -1(k + 1) = 0 (k + 1)(6k - 1) = 0 ⇒ k + 1 = 0 or 6k -1 = 0 k = -1 or k = 1/6 So for k = -1 or k = 1/6 lines are perpendicular to each other < br > < strong > Mr Shivam Gurjar < /strong > < /p > < /div > < /body > < /html >