The value of universal gravitation al constant in CGS system is 6.67×10^-8 dynecm^-2gm^-2.Its value in SI system is??
Explain clearly
Answers
Answer:
6.67 × 10^-8 dyne.cm²/g²
6.67 × 10^-8 dyne.cm²/g²we know ,
6.67 × 10^-8 dyne.cm²/g²we know ,1 dyne = 10^-5 N
6.67 × 10^-8 dyne.cm²/g²we know ,1 dyne = 10^-5 N1 cm = 10^-2 m
6.67 × 10^-8 dyne.cm²/g²we know ,1 dyne = 10^-5 N1 cm = 10^-2 m1 g = 10^-3 kg
6.67 × 10^-8 dyne.cm²/g²we know ,1 dyne = 10^-5 N1 cm = 10^-2 m1 g = 10^-3 kguse this here ,
6.67 × 10^-8 dyne.cm²/g²we know ,1 dyne = 10^-5 N1 cm = 10^-2 m1 g = 10^-3 kguse this here ,6.67 × 10^-8 × ( 10^-5) .(10^-2)²/(10^-3)²
6.67 × 10^-8 dyne.cm²/g²we know ,1 dyne = 10^-5 N1 cm = 10^-2 m1 g = 10^-3 kguse this here ,6.67 × 10^-8 × ( 10^-5) .(10^-2)²/(10^-3)²= 6.67 × 10^-8 { 10^-5× 10^-4 /10^-6} Nm²/kg²
6.67 × 10^-8 dyne.cm²/g²we know ,1 dyne = 10^-5 N1 cm = 10^-2 m1 g = 10^-3 kguse this here ,6.67 × 10^-8 × ( 10^-5) .(10^-2)²/(10^-3)²= 6.67 × 10^-8 { 10^-5× 10^-4 /10^-6} Nm²/kg²= 6.67 × 10^-8- × 10^-3 N.m²/kg²
6.67 × 10^-8 dyne.cm²/g²we know ,1 dyne = 10^-5 N1 cm = 10^-2 m1 g = 10^-3 kguse this here ,6.67 × 10^-8 × ( 10^-5) .(10^-2)²/(10^-3)²= 6.67 × 10^-8 { 10^-5× 10^-4 /10^-6} Nm²/kg²= 6.67 × 10^-8- × 10^-3 N.m²/kg²= 6.67× 10^-11 Nm²/kg²