Math, asked by shobharajsingh1980, 1 month ago

The value of ( x+1/x)² is: ​

Answers

Answered by dharanidattakankanal
0

Step-by-step explanation:

x² + ¹/ₓ² + 2

Given

\bullet \;\; \rm \bigg(x+\dfrac{1}{x}\bigg)^2∙(x+

x

1

)

2

To Find

Value of the givenx² + ¹/ₓ² + 2

Given

\bullet \;\; \rm \bigg(x+\dfrac{1}{x}\bigg)^2∙(x+

x

1

)

2

To Find

Value of the given

Formula

\bullet \;\; \rm (a+b)^2=a^2+b^2+2ab∙(a+b)

2

=a

2

+b

2

+2ab

Solution

\begin{gathered}\rm Compare\ given\ with\ (a+b)^2\ ,we\ get\ ,\\\\\implies \rm a=x\ ,b=\dfrac{1}{x}\end{gathered}

Compare given with (a+b)

2

,we get ,

⟹a=x ,b=

x

1

So ,

\begin{gathered}\rm \bigg(x+\dfrac{1}{x}\bigg)^2\\\\\implies \rm x^2+\bigg(\dfrac{1}{x}\bigg)^2+2.x.\dfrac{1}{x}\\\\\implies \rm x^2+\dfrac{1}{x^2}+2\end{gathered}

(x+

x

1

)

2

⟹x

2

+(

x

1

)

2

+2.x.

x

1

⟹x

2

+

x

2

1

+2

Formula

\bullet \;\; \rm (a+b)^2=a^2+b^2+2ab∙(a+b)

2

=a

2

+b

2

+2ab

Solution

\begin{gathered}\rm Compare\ given\ with\ (a+b)^2\ ,we\ get\ ,\\\\\implies \rm a=x\ ,b=\dfrac{1}{x}\end{gathered}

Compare given with (a+b)

2

,we get ,

⟹a=x ,b=

x

1

So ,

\begin{gathered}\rm \bigg(x+\dfrac{1}{x}\bigg)^2\\\\\implies \rm x^2+\bigg(\dfrac{1}{x}\bigg)^2+2.x.\dfrac{1}{x}\\\\\implies \rm x^2+\dfrac{1}{x^2}+2\end{gathered}

(x+

x

1

)

2

⟹x

2

+(

x

1

)

2

+2.x.

x

1

⟹x

2

+

x

2

1

+2

Similar questions