The value of (x 2 + y 2), if xy = 15
and x + y = 10 *
Answers
Answered by
10
Answer
x² + y² = 70
Given
x + y = 10
xy = 15
To Find
x² + y²
Solution
x + y = 10
On squaring on both sides , we get ,
⇒ ( x + y )² = (10)²
⇒ x² + y² + 2xy = 100
⇒ x² + y² + 2( 15 ) = 100 [ ∵ xy = 15 ]
⇒ x² + y² + 30 = 100
⇒ x² + y² = 100 - 30
⇒ x² + y² = 70
So , x² + y² = 70
Answered by
0
Answer:
(x+y)^2=x^2+y^2+2xy
10^2=x^2+y^2+2(15)
100=x^2+y^2+30
x^2+y^2=100-30
x^2+y^2=70
Similar questions