Math, asked by preethitrapthi1234, 3 months ago

The value of x for which 2x, (x + 10) and (3x + 2) are the three consecutive terms of an AP, is
(a) 6 (b) -6 (c) 18 (d) -18.

With proper explanation.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

Three consecutive terms of an AP are 2x, x + 10 and 3x + 2

\large\underline{\sf{To\:Find - }}

The value of x.

\large\underline{\sf{Solution-}}

Given three consecutive terms of an AP is 2x, x + 10 and 3x + 2.

Let assume that

\rm :\longmapsto\:a_1 = 2x

\rm :\longmapsto\:a_2 = x + 10

\rm :\longmapsto\:a_3 = 3x + 2

We know that,

\rm :\longmapsto\:a_1,a_2,a_3 \: forms \: arithmetic \: progression \: if

\rm :\longmapsto\:a_2 - a_1 = a_3 - a_2

\rm :\longmapsto\:x + 10 - 2x = 3x + 2 - (x + 10)

\rm :\longmapsto\:10 - x = 3x + 2 - x  -  10

\rm :\longmapsto\:10 - x = 2x - 8

\rm :\longmapsto\: - x - 2x =  - 10 - 8

\rm :\longmapsto\: - 3x =  - 18

\bf :\longmapsto\: x = 6

Verification,

\rm :\longmapsto\:a_1 = 2x = 2 \times 6 = 12

\rm :\longmapsto\:a_2 = x + 10 = 6 + 10 = 16

\rm :\longmapsto\:a_3 = 3 \times 6 + 2 = 20

Now,

\rm :\longmapsto\:a_2 - a_1 = 16 - 12 = 4

\rm :\longmapsto\:a_3 - a_2 = 20 - 16 = 4

Additional Information :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

and

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.
Similar questions