Math, asked by amminanimasa, 2 months ago

The value of x, for which
 \frac{ {125}^{5} }{8}  \div  \frac{ {125}^{x} }{8}  =  \frac{ {5}^{18} }{2}

Answers

Answered by Flaunt
267

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf  \dfrac{ {125}^{5} }{8}  \div  \dfrac{ {125}^{x} }{8}  =  \dfrac{ {5}^{18} }{2}

\sf \longmapsto\large \dfrac{ \frac{ {( {5}^{3} )}^{5} }{8} }{ \dfrac{ { ({5}^{3}) }^{x} }{8} }  =  \dfrac{ {5}^{18} }{2}

\sf \longmapsto \dfrac{ \frac{ {5}^{15} }{ {2}^{3} } }{ \dfrac{ {5}^{3x} }{ {2}^{3} } }  =  \dfrac{ {5}^{18} }{2}

\sf \longmapsto \dfrac{ {5}^{15} }{ {5}^{3x} }  =  \dfrac{ {5}^{18} }{2}

Concepts:

  • If bases are same then powers gets added in multiplication and gets substracted in division.

\sf \boxed{ \bold{ \red{ \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }}}

\sf \boxed{\bold {\red{{a}^{m}  \times  {a}^{n}  =  {a}^{m + n} }}}

\sf \longmapsto  \large{5}^{15 - 3x}  =  \dfrac{ {5}^{18} }{2}

Bases are same on both sides say 5 so ,5 gets automatically cancelled.

\sf \longmapsto15 - 3x =  \dfrac{18}{2}

\sf \longmapsto15 - 3x = 9

\sf \longmapsto - 3x =  - 6

\sf \longmapsto \bold{x = 2}

Check

\sf \longmapsto15 - 3x = 9

\sf \longmapsto15 - 6 = 9

Similar questions