Math, asked by pikup6885, 2 months ago

the value of x for which the f(x) =25-20x+5x is minimum is

Answers

Answered by kelly324141
1

Answer:

x = 5/3

I hope this is helpful for you

Step-by-step explanation:

25-20x+5x=0

25-15x=0

-15x=-25

x= -25/-15

x= 5/3

Answered by Anonymous
0

Step-by-step explanation:

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x^{2}+y^{2}=98}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:  \implies x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  \\ \tt:  \implies y =  \frac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2}  }  \\  \\ \red{\underline \bold{to \: find : }} \\  \tt:  \implies  {x}^{2}  +  {y}^{2}  = ?

• According to given question :

 \bold{Rationalising : } \\  \tt:  \implies x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  } \times  \frac{ \sqrt{3}   +   \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }   \\  \\ \tt:  \implies x = \frac{ (\sqrt{3} +  \sqrt{2} )^{2} }{ {( \sqrt{3}})^{2} -  { (\sqrt{2} })^{2}   }  \\  \\ \tt:  \implies x = \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2} )}^{2}  + 2 \sqrt{6}  }{3 - 2}  \\  \\ \tt:  \implies x =3 + 2 + 2 \sqrt{6}  \\  \\ \tt:  \implies x =5 + 2 \sqrt{6}  \\  \\  \bold{Similarly : } \\ \tt:  \implies y = \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

 \tt:  \implies y = \frac{ (\sqrt{3}  -  \sqrt{2})^{2} }{ {( \sqrt{3} )}^{2} -  { (\sqrt{2} })^{2}  }  \\  \\ \tt:  \implies y= \frac{ { (\sqrt{3} })^{2} +  {( \sqrt{2} )}^{2}  - 2 \sqrt{6}  }{3 - 2 }  \\  \\ \tt:  \implies y=3 + 2 - 2 \sqrt{6}  \\  \\ \tt:  \implies y =5 - 2 \sqrt{6}  \\  \\  \bold{For \: finding \: value : } \\ \tt:  \implies  {x}^{2}  +  {y}^{2} =(x + y)^{2}  - 2xy \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2} =(5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6} )^{2}  - 2(5  +  2\sqrt{6} )(5 - 2 \sqrt{6} ) \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2} = {10}^{2}  - 2( {5}^{2}  -  {(2 \sqrt{6}) }^{2}  \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2} =100 - 2(25 - 24) \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2} =100 - 2 \\  \\  \green{\tt:  \implies  {x}^{2}  +  {y}^{2} =98}

Similar questions