Math, asked by zoyakhanum67, 2 months ago

the value of x on solving x/x-1 + x-1/x=2 1/2 will be​

Answers

Answered by Nova2021
12

Answer:

Value of x = 2 and -1

Step-by-step explanation:

 \frac{x}{x - 1}  +  \frac{x - 1}{x}  = 2 \frac{2}{1}  \\  \frac{ {x}^{2} +  ({x - 1)}^{2}  }{x(x - 1)}  =  \frac{5}{2}  \\  \frac{{x}^{2}  +  {x}^{2}  + 1 - 2x}{ {x}^{2}  - x}  =  \frac{5}{2}  \\  \frac{2 {x}^{2}  - 2x + 1}{ {x}^{2} - x }  =  \frac{5}{2}  \\ 2(2 {x}^{2}  - 2x + 1) = 5({x}^{2} - x ) \\ 4 {x}^{2}  - 4x + 2 = 5{x}^{2} - 5x  \\ 4 {x}^{2}  -  5{x}^{2}  -  4x   +  5x \: + 2 = 0 \\  -  {x}^{2}  + x + 2 = 0 \\  {x}^{2}  - x - 2 = 0 \\  {x}^{2}  - (2 - 1)x - 2 = 0 \\  {x}^{2}  - 2x + x  - 2 = 0 \\ x(x - 2) + (x - 2) = 0 \\ (x - 2)(x + 1) = 0 \\ x - 2 = 0 \:  \: and \:  \: x + 1 = 0 \\ x = 2 \:  \: and \:  \: x =  - 1

=> Follow Me

Similar questions