Math, asked by darkknight55, 2 months ago

The value of x raised to the power of a-b*x raised to the power of b-c*x raised to the power of c-a

Answers

Answered by mayandsaini2005
43

/ab( xb /xc)^1/bc(xc/xa)1/ca

We need to prove the gives equation is unity that si 1

LHS=(xa/xb)^1/ab( xb /xc)^1/bc(xc/xa)1/ca

Using laws of exponents

= (xa/xb)1/ab( xb /xc)1/bc(xc/xa)1/ca

= x(a-b)/ab * x^(b-c)/bc * x^(c-a)/ca

= x[(a-b)/ab + (b-c)/bc + (c-a)/ca]

= x[c(a-b)/abc + a(b-c)/abc + b(c-a)/abc ]

= x { [c(a-b)+ a(b-c) + b(c-a) ]/abc }

= x ( ac – bc + ab – ac + bc – ab ] /abc

= x 0/abc

= x0

= 1

= RHS

Hence proved

Was this answer helpful?

4.5 (11)

Upvote (7)

Answered by bhagyashreehappy123
6

this is a write answer

I think I can help you

Attachments:
Similar questions