The value of (x-y)(x+y)+(y-z)(y+z)+(z-x)(z+x) is :
a) x+y+z
b) x-y+yz+zx
c) 0
Answers
Answer: Given: The term (x+y)(x-y)+(y+z)(y-z)+(z+x)(z-x) = 0
To find: Prove the above term.
Solution:
Now we have given the term (x+y)(x-y)+(y+z)(y-z)+(z+x)(z-x) = 0
Lets consider LHS, we have:
(x+y)(x-y)+(y+z)(y-z)+(z+x)(z-x)
Now we know the formula, which is:
(a - b)(a + b) = a^2 - b^2
So applying it in LHS, we get:
( x^2 - y^2 ) + ( y^2 - z^2 ) + (z^2 - x^2 )
Now adding it, we get:
x^2 - y^2 + y^2 - z^2 + z^2 - x^2
0 ..RHS.
Answer:
So in solution part we proved that (x+y)(x-y)+(y+z)(y-z)+(z+x)(z-x) = 0
Step-by-step explanation:
x = a.(b-c). ………….(1).
y = b.(c-a). ……………..(2).
z = c.(a-b). ………………(3).
Adding the eqn.(1) , (2) and (3).
x + y + z = ab -ca+bc -ab +ca -bc.
or, x + y + z = 0. ……………..(4).
xy(x+y)+yz.(y+z)+zx.(z+x) +3xyz.=?
Putting (x+y)=-z , (y+z) = -x and (z+x) = -y from eqn.(4).
= xy(-z) +yz(-x)+zx(-y) +3xyz.
= -3xyz + 3xyz.
= 0. Answer.