The value of (x – y)(x + y) + (y – z)(y + z) + (z – x) (z + x) is:The value of (x – y)(x + y) + (y – z)(y + z) + (z – x) (z + x) is:
Answers
Answered by
8
To Evaluate :
The value of :
(x-y)(x+y) + (z-x)(z+x) + (y-z)(y+z)
Identity To Be Used:
We will use the following identity of expressions:
- (a-b)(a+b) = a²-b²
Solution :
Now here, the terms can be simplified by using the identity given above :
(x+y)(x-y)+(y+z)(y-z)+(z+x)(z-x)
= (x²-y²) + (y²-z²) + (z²-x²)
= (x²-x²)+(y²-y²)+(z²-z²)
= 0+0+0
= 0
So, the value of :
(x+y)(x-y)+(y+z)(y-z)+(z+x)(z-x)
= 0
Additional Information:
Some Identities useful for these kinds of questions :
- (a+b)² = a²+b+2ab
- (a-b)² = a²+b²-2ab
- (x+a)(x+b) = x²+(a+b)x+ab
- (a+b+c)³ = a²+b²+c²+2ab+2bc+2ca
- (a+b)³ = a³+b³+3a²b+3ab²
- (a-b)³ = a³-b³-3a²b+3ab²
- (a+b)(a-b) = a²-b²
Answered by
1
The answer is Z(zed) E(ee) R(ar) O(o)
Means 0, the invention of Aryabhatt
Similar questions