Math, asked by ak7503167, 8 months ago

the value of xfor the minimum value of√3cosx +sin x​

Answers

Answered by thequeengirl
9

Answer:

➜\sf\red{Answer:-}

y=3 sin x + 4 cos x

dy/dx= 0 → x for Maximum & Minimum values of y

3cosx-4sinx =0

(-3/5)cosx+(4/5)sinx=0

if sinF = -3/5 and cosF = 4/5 then:

sinF cosx+ cosF sinx =0

sin(F+x)=0 → F+x= πK where k= ….,3,2,1,0,-1,-2,-3, ….

so x= -F +πK where k= ….,3,2,1,0,-1,-2,-3, ….

so sinx = sin(-F +πK)= sin(-F)cos(πK)+cos(-F)sin(πK)

sinx = sin(-F)cos(πK) +0 = -sin(F)cos(πK) = -(-3/5)*(-1)^(K+1)

sinx = (3/5)*(-1)^(K+1)

And cosx = cos(-F +πK)= cos(-F)cos(πK)-sin(-F)sin(πK)

cosx = cos(F)(-1)^(K+1)-0 = (4/5)(-1)^(K+1)

Result:

sinx = (3/5)*(-1)^(K+1) → Maximum = 3/5 , Minimum= -3/5

cosx = (4/5)(-1)^(K+1) → Maximum = 4/5 , Minimum= -4/5

so

for y=3 sin x + 4 cos x

Maximum Y= 3 (Maximum sinx) + 4 (Maximum cosx)

Maximum Y= 3 (3/5) + 4 (4/5) =25/5 =5

Minimum Y= 3 (Minimum sinx) + 4 (Minimum cosx)

Minimum Y= 3 (-3/5) + 4 (-4/5) =-5

➜\sf\red{hope \:  this  \: will \: help \: u:-}

\huge{➜}\tt FOLLOW \: ME:-

Similar questions