the value of xfor the minimum value of√3cosx +sin x
Answers
Answer:
y=3 sin x + 4 cos x
dy/dx= 0 → x for Maximum & Minimum values of y
3cosx-4sinx =0
(-3/5)cosx+(4/5)sinx=0
if sinF = -3/5 and cosF = 4/5 then:
sinF cosx+ cosF sinx =0
sin(F+x)=0 → F+x= πK where k= ….,3,2,1,0,-1,-2,-3, ….
so x= -F +πK where k= ….,3,2,1,0,-1,-2,-3, ….
so sinx = sin(-F +πK)= sin(-F)cos(πK)+cos(-F)sin(πK)
sinx = sin(-F)cos(πK) +0 = -sin(F)cos(πK) = -(-3/5)*(-1)^(K+1)
sinx = (3/5)*(-1)^(K+1)
And cosx = cos(-F +πK)= cos(-F)cos(πK)-sin(-F)sin(πK)
cosx = cos(F)(-1)^(K+1)-0 = (4/5)(-1)^(K+1)
Result:
sinx = (3/5)*(-1)^(K+1) → Maximum = 3/5 , Minimum= -3/5
cosx = (4/5)(-1)^(K+1) → Maximum = 4/5 , Minimum= -4/5
so
for y=3 sin x + 4 cos x
Maximum Y= 3 (Maximum sinx) + 4 (Maximum cosx)
Maximum Y= 3 (3/5) + 4 (4/5) =25/5 =5
Minimum Y= 3 (Minimum sinx) + 4 (Minimum cosx)
Minimum Y= 3 (-3/5) + 4 (-4/5) =-5