Math, asked by mkannan18vk, 3 months ago

the value of z transform of (1/n!) is​

Answers

Answered by Anonymous
5

Answer:

hope this helps u

Step-by-step explanation:

Attachments:
Answered by mithun890
1

Answer:   Z(\frac{1}{n} )= log(\frac{Z}{Z-1} )

Step-by-step explanation:

                    Z(\frac{1}{n} )=Z^{-n} (\frac{1}{n}) (from, n=1 to n= infinite)

                             =Z^{-1} +\frac{Z^{-2} }{2} +\frac{Z^{-3} }{3} +.............

  • We know that the  expansion of log(1-x) is

         =-x-\frac{x^{2} }{2} -\frac{x^{3} }{3} -......................

∴we can write as,

             log(1-x)=-(x+\frac{x^{2} }{2} +\frac{x^{3} }{3} +......................)

  • Now replace x with \frac{1}{2}

           log(1-\frac{1}{2} )=-(Z^{-1} +\frac{Z^{-2} }{2} +\frac{Z^{-3} }{3} +.....)

          -log(\frac{Z-1}{Z} )=(Z^{-1} +\frac{Z^{-2} }{2} +\frac{Z^{-3} }{3} +...)

            log(\frac{Z}{Z-1} ) = Z(\frac{1}{n} )

Similar questions