Math, asked by Anonymous, 5 months ago

the values of θ lying between θ = 0 & θ = π/2 and satisfying the equation
 \left|\begin{array}{ccc} \sf 1+sin^2\theta &\sf cos^2\theta &\sf 4sin\:4\theta\\\sf sin^2\theta &\sf 1+cos^2\theta &\sf 4sin\:4\theta\\\sf sin^2\theta &\sf cos^2\theta&\sf 1+4sin\:4\theta \end{array}\right|

Answers

Answered by Anonymous
177

\sf 0 = \left|\begin{array}{ccc} \sf 1+sin^2\theta &\sf cos^2\theta &\sf 4sin\:4\theta\\\sf sin^2\theta &\sf 1+cos^2\theta &\sf 4sin\:4\theta\\\sf sin^2\theta &\sf cos^2\theta&\sf 1+4sin\:4\theta \end{array}\right|

 = \left|\begin{array}{ccc} \sf 2 &\sf cos^2\theta &\sf 4sin\:4\theta\\\sf 2 &\sf 1+cos^2\theta &\sf 4sin\:4\theta\\\sf 2 &\sf cos^2\theta&\sf 1+4sin\:4\theta \end{array}\right|

 = \left|\begin{array}{ccc} \sf 2&\sf cos^2\theta &\sf 4sin\:4\theta\\\sf 0&\sf 1&\sf 0\\\sf -1&\sf 0&\sf 1\end{array}\right|

now, to find determinant:-

 \left|\begin{array}{ccc} \boxed{+} &\sf \boxed{-} & \boxed{+}\\\\\boxed{-}&\boxed{+}&\boxed{-}\\\\\boxed{+}&\boxed{-}&\boxed{+}\end{array}\right|

so now,

\sf = +2\left|\begin{array}{cc} \sf 1&\sf 0\\\sf 0&\sf 1 \end{array}\right| - cos^2\theta \left|\begin{array}{cc}\sf 0&\sf 0\\\sf -1&\sf 1 \end{array}\right| + 4\:sin\:4\theta \left|\begin{array}{cc} \sf 0&\sf 1\\\sf -1&\sf 0 \end{array}\right|

\sf = +2(1)(1)-(0)(0)-cos^2\theta(0)(1)-(-1)(0)+4\:sin\:4\theta(0)(0)-(-1)(1)

\sf = 2-cos^2\theta \times 0 + 4\:sin\:4\theta

\sf = 2+4\:sin\:4\theta

\sf \therefore sin\:4\theta = \dfrac{-1}{2}

\sf \implies 4\theta = \dfrac{7\pi}{6} , \dfrac{4\pi}{6}

\sf \implies \theta = \dfrac{7\pi}{24} \;\: or \:\: \dfrac{4\pi}{24}


Anonymous: O.o
Anonymous: Thank u :)
Seafairy: welldone:)♡
Anonymous: Thank u :)
Seafairy: your welcome:)♡
Anonymous: :)
Seafairy: (:
Answered by Anonymous
3

Answer:

YEAH MAINE DEKH LIYA

BUT AAPKA ASLI NAAM...

NICE TO MEET YOU YRR

THANKS ALOT ONCE AGAIN

Attachments:
Similar questions