Math, asked by gunaselviravi1910, 4 months ago

the values of x for the equations square root of (2x²+5x-2)- square root of (2x²+5x+9) =1​

Answers

Answered by mathdude500
0

\large\underline\purple{\bold{Solution :-  }}

 \rm :  \implies \: \sqrt{ {2x}^{2}  + 5x - 2}  -  \sqrt{ {2x}^{2}  + 5x + 9}  = 1

 \boxed{ \pink{ \rm :  \implies \:Let \:  {2x}^{2} + 5x = y }} -  -  - (i)

So, given equation can be rewritten as

 \rm :  \implies \: \sqrt{y - 2}   -   \sqrt{y  +  9}  = 1

 \rm :  \implies \: \sqrt{y  - 2}  = 1 +  \sqrt{y + 9}

 \green{ \rm \: squaring \: both \: sides}

 \rm :  \implies \: \cancel{y} - 2 = 1 +  \cancel{y} + 9 + 2 \sqrt{y + 9}

 \rm :  \implies \: -  \: 2 \sqrt{y + 9}  = 12

 \rm :  \implies \: \sqrt{y + 9}  =  -  \: 6

 \green{ \rm \: squaring \: both \: sides}

 \rm :  \implies \:y + 9 = 36

 \rm :  \implies \:y = 27

On substituting the value of y from equation (i), we get

 \red{ \rm :  \implies \: {2x}^{2}  + 5x = 27}

 \rm :  \implies \: {2x}^{2}  + 5x - 27 = 0

 \rm :  \implies \:  on \: comparing \: with \: {ax}^{2}  + bx + c = 0 \: we \: get

a = 2

b = 5

c = - 27

Therefore, Discriminant, D is given by

 \rm :  \implies \:D \:  =  \:  {b}^{2}  - 4ac

 \rm :  \implies \:D =  {5}^{2}  - 2 \times 2 \times ( - 27)

 \rm :  \implies \:D \:  =  \: 25 + 108

 \rm :  \implies \:D = 133

Hence, solution is given by

 \pink{ \:  \rm :  \implies \:x \:  = \dfrac{ - b \:  \pm \:  \sqrt{ D} }{2a} }

 \rm :  \implies \:x \:  =  \: \dfrac{ - 5 \:  \pm \:  \sqrt{133} }{4}

 \rm :  \implies \:x = \dfrac{ - 5 \:  \pm \: 11.5}{4}

 \rm :  \implies \:x \:  =  \: \dfrac{ - 5 + 11.5}{4}  \:  \: or \:  \: \dfrac{ - 5 - 11.5}{4}

 \rm :  \implies \:x \:  =  \: \dfrac{5.5}{4}  \:  \: or \:  \: \dfrac{ - 16.5}{4}

 \rm :  \implies \:x \:  =  \: 1.625 \:  \: or \:  \:  -  \: 4.125

Verification :-

When y = 27,

Consider, LHS

 \rm :  \implies \: \sqrt{y - 2}   -  \sqrt{y + 9}

 \rm :  \implies \: \sqrt{27 - 2}  -  \sqrt{27 + 9}

 \rm :  \implies \: \sqrt{25}  -  \sqrt{36}

 \rm :  \implies \:5 - 6

 \rm :  \implies \: - 1

 \rm :  \implies \: \ne \: RHS

Hence, given equation has no solution.

Similar questions