Math, asked by kourjass6802, 1 year ago

The variable x takes two values x1 and x2 with frequencies f1 and f2 respectively. If sigma denotes the standard deviation of x then (sigma)^2 is equal to

Answers

Answered by JinKazama1
12

Answer:

f_1f_2\frac{(x_1-x_2)^2}{(f_1+f_2)^2}\\

Step-by-step explanation:

We denote ,

n = sample size

n=(f_1+f_2)

\sigma =Standard\:Deviation\\ \\ \sigma^2 = Variance

We know that,

\sigma^2 = \frac{\sum x_i^2}{n}-(\frac{\sum x_i}{n})^2 \\ \\ => \frac{x_1^2f_1+x_2^2f_2}{f_1+f_2}-(\frac{x_1f_1+x_2f_2}{f_1+f_2})^2\\ \\ =>\frac{f_1f_2x_2^2+f_1f_2x_1^2}{(f_1+f_2)^2}-\frac{2f_1f_2x_1x_2}{(f_1+f_2)^2}\\ \\=>\frac{f_1f_2(x_1-x_2)^2}{(f_1+f_2)^2}

Similar questions