Physics, asked by reddivarirohini1178, 9 months ago

The vector 6î+3j^-ak^ is perpendicular to 3î+j^+3k^. The value of a is

Answers

Answered by Anonymous
6

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

The vector 6î+3j^-ak^ is perpendicular to 3î+j^+3k^. The value of a is

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

  • two vector 6î+3j^-ak^ and 3î+j^+3k^
  • both are perpendicular

\Large{\underline{\mathfrak{\bf{\pink{Find}}}}}

  • Value of " a "

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

we know,

If two vector are in perpendicular ,

So, their scaler product always will be zero (0) .

Let,

\mapsto\sf{\:\vec{A}\:=\:6\^{i}+3\^{j}-a\^{k}}

\mapsto\sf{\:\vec{B}\:=\:3\^{i}+\^{j}+3\^{k}}

\Large{\underline{\mathfrak{\bf{\orange{Scaler\:product}}}}}

\mapsto\sf{\:\vec{A}.\vec{B}\:=\:(6\^{i}+3\^{j}-a\^{k}).(3\^{i}+\^{j}+3\^{k})\:=\:0}}} \\ \\ \mapsto\sf{\:\vec{A}.\vec{B}\:=\:(6\^{i}).(3\^{i})+(3\^{j}).(\^{j})-(a\^{k}).(3\^{k})\:=\:0}}

\mapsto\sf{\:\vec{A}.\vec{B}\:=\:(18+3-3a)\:=\:0}} \\ \\ \mapsto\sf{\:3a\:=\:21}} \\ \\ \mapsto\sf{\:a\:=\:\cancel{\dfrac{21}{3}}}} \\ \\ \mapsto\sf{\red{\:a\:=\:7}}

\Large{\underline{\mathfrak{\bf{\orangr{Thus}}}}}

  • Value of a = 7

Important Scaler Product

  • \sf{\:\^{i}.\^{i}\:=\:1}
  • \sf{\:\^{j}.\^{j}\:=\:1}
  • \sf{\:\^{k}.\^{k}\:=\:1}
  • \sf{\:\^{i}.\^{j}\:=\:0}
  • \sf{\:\^{j}.\^{k}\:=\:0}
  • \sf{\:\^{k}.\^{i}\:=\:0}
Answered by manglavirender9
0

the answer of this question is a=7

Similar questions