Physics, asked by rohitSriSai, 9 months ago

the vector parallel to 4icap_3jcap+5kcap and wh9se length is the artematic mean of lengths of two vectors 2 icap - 4jcap=4kcapand icap+root6jcap+3kcap​

Answers

Answered by shadowsabers03
5

Correct Question:-

Find the vector parallel to \bf{4\ \hat i-3\ \hat j+5\ \hat k} and whose length is the arithmetic mean of lengths of two vectors \bf{2\ \hat i-4\ \hat j+4\ \hat k} and \bf{\hat i+\sqrt6\ \hat j+3\ \hat k}.

Solution:-

Length of the vector \bf{2\ \hat i-4\ \hat j+4\ \hat k},

\sf{=\sqrt{2^2+(-4)^2+4^2}}

\sf{=\sqrt{4+16+16}}

\sf{=\sqrt{36}}

\sf{=6}

Length of the vector \bf{\hat i+\sqrt6\ \hat j+3\ \hat k},

\sf{=\sqrt{1^2+(\sqrt6)^2+3^2}}

\sf{=\sqrt{1+6+9}}

\sf{=\sqrt{16}}

\sf{=4}

The arithmetic mean of these lengths \sf{=\dfrac{6+4}{2}=5.}

This is the length of the vector to be found.

Length of the vector \bf{4\ \hat i-3\ \hat j+5\ \hat k},

\sf{=\sqrt{4^2+(-3)^2+5^2}}

\sf{=\sqrt{16+9+25}}

\sf{=\sqrt{50}}

\sf{=5\sqrt2}

Then, the vector to be found is given by,

\longrightarrow\vec{\sf{a}}=\sf{\dfrac{5}{5\sqrt2}}\,\left(\bf{4\ \hat i-3\ \hat j+5\ \hat k}\right)

\longrightarrow\vec{\sf{a}}=\sf{\dfrac{1}{\sqrt2}}\,\left(\bf{4\ \hat i-3\ \hat j+5\ \hat k}\right)

\longrightarrow\underline{\underline{\vec{\sf{a}}=\bf{2\sqrt2\ \hat i-\dfrac{3}{2}\sqrt2\ \hat j+\dfrac{5}{2}\sqrt2\ \hat k}}}

Similar questions