Math, asked by PhoenixTamizha, 4 days ago

The vectors a-b,b-c,c -a are
Wrong answers Will be reported​

Answers

Answered by mathdude500
5

Question :-

\rm \: The \: vectors \: \vec{a} - \vec{b}, \: \vec{b} - \vec{c}, \: \vec{c} - \vec{a} \: are -  -  -  -  \\

\large\underline{\sf{Solution-}}

Consider

\rm \: [\vec{a} - \vec{b} \:  \: \vec{b} - \vec{c} \:  \: \vec{c} - \vec{a}] \\

can be rewritten as

\rm \:  = (\vec{a} - \vec{b}).\bigg((\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \bigg)  \\

\rm \:  = (\vec{a} - \vec{b}).\bigg(\vec{b} \times \vec{c} - \vec{b} \times \vec{a} - \vec{c} \times \vec{c} + \vec{c} \times \vec{a} \bigg)  \\

We know,

\boxed{ \rm{ \:\vec{a} \times \vec{a} = 0 \: }} \\

So, using this, we get

\rm \:  = (\vec{a} - \vec{b}).\bigg(\vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \bigg)  \\

\rm \:  =\vec{a}.(\vec{b} \times \vec{c}) - \vec{a}.(\vec{b} \times \vec{a}) + \vec{a}.(\vec{c} \times \vec{a}) - \vec{b}.(\vec{b} \times \vec{c}) + \vec{b}.(\vec{b} \times \vec{a}) - \vec{b}.(\vec{c} \times \vec{a})  \\

\rm \:  =\vec{a}.(\vec{b} \times \vec{c})  - 0 + 0 - 0 + 0 - \vec{b}.(\vec{c} \times \vec{a})  \\

\rm \:  =\vec{a}.(\vec{b} \times \vec{c})  - \vec{a}.(\vec{b} \times \vec{c})  \\

\rm \:  =  \: 0

Thus,

\rm\implies \:\rm \: [\vec{a} - \vec{b} \:  \: \vec{b} - \vec{c} \:  \: \vec{c} - \vec{a}] = 0 \\

\rm\implies \: \vec{a} - \vec{b}, \: \vec{b} - \vec{c}, \: \vec{c} - \vec{a} \: are \: coplanar \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:[\vec{a} \:  \: \vec{b} \:  \: \vec{c}] \:  =  \: \vec{a}.(\vec{b} \times \vec{c}) \:  \: }} \\

\boxed{ \rm{ \: \:\vec{a}.(\vec{b} \times \vec{c}) = \vec{b}.(\vec{c} \times \vec{a}) = \vec{c}.(\vec{a} \times \vec{b}) }} \\

\boxed{ \rm{ \: \:[\vec{a} \:  \: \vec{b} \:  \: \vec{c}] = 0 \: \rm\implies \:\vec{a},\vec{b},\vec{c} \: are \: coplanar  \: }} \\

\boxed{ \rm{ \: \:[\vec{a} \:  \: \vec{a} \:  \: \vec{b}] = 0 \:   \: }} \\

Similar questions