Math, asked by sachinsonawane90, 4 months ago

The vectors are u= 6i -10j+4k and v= 14i +2j-4k.find the projection of u and v and the vector component of u orthogonal v.​

Attachments:

Answers

Answered by pbcgvextra25
0

Answer:

your video will resume after the following questions about HTML5 video is not a problem with the high-flying Guggenheim museum of art and design and development of the your best price for the your best price

Answered by shabeehajabin
3

Answer:

The projection of\overrightarrow{u}on \overrightarrow{v} is <\dfrac{28}{9},\dfrac{4}{9},\dfrac{-8}{9} > and the answer for the vector component is option (c), that is \frac{26}{9}i-\frac{94}{9}j+\frac{44}{9}k

Step-by-step explanation:

The question is to find the projection of \overrightarrow{u} and \overrightarrow{v}, and the vector component of

Firstly write down the components, \overrightarrow{u}=< 6,-10,4>

                                              \overrightarrow{v}= <14,2,-4 >

The formula to find the projection of\overrightarrow{u}on \overrightarrow{v} = \dfrac{\overrightarrow{u}\cdot \overrightarrow{v}}{\left| \overrightarrow{v}\right| ^{2}}\left \overrightarrow{v}\right

                                            =\dfrac{\left( 6\times 14\right) +\left( -10\times 2\right) +\left( 4\times  -4\right) }{14^{2}+2^{2}+\left( -4^{2}\right) }\overrightarrow{v}                                                       =\dfrac{48}{216}< 14,2,-4>

                                             =\dfrac{2}{9} <14,2,-4 >

                                             = <\dfrac{28}{9},\dfrac{4}{9},\dfrac{-8}{9} >

So this is the answer to projection. Now we have to find the vector component of \overrightarrow{u} orthogonal \overrightarrow{v}. For that, we have to subtract the projection of

Vector component of \overrightarrow{u} orthogonal \overrightarrow{v}, \overrightarrow{w}=\overrightarrow{u}-projection of

                                                     

                   \overrightarrow{w}= <6,-10,4>-<\frac{28}{9},\frac{4}{9},\frac{-8}{9}>

  To make the subtraction easy, multiply u components with 9. Then,

         \overrightarrow{w}= <\frac{54}{9} ,\frac{-90}{9} ,\frac{36}{9} >-<\frac{28}{9},\frac{4}{9},\frac{-8}{9}>

            = <\frac{26}{9},\frac{-94}{9},\frac{44}{9}>

            =\frac{26}{9}i-\frac{94}{9}j+\frac{44}{9}k

This is the answer for the vector component. From the given options, Option c is the answer.  

Similar questions