Physics, asked by ShubKr, 5 months ago

The velocity at maximum height of a projectile is root 3/2 times initial velocity of projection (u) . Its range on horizontal plane is

Answers

Answered by Ekaro
16

Given :

The velocity at maximum height of a projectile is √3/2 times initial velocity of projection.

To Find :

Range of the projectile.

Solution :

❖ First of all, we need to find angle of projection.

\sf:\implies\:Initial\:Velocity\times\dfrac{\sqrt3}{2}=Velocity\:at\:max.\:height

\sf:\implies\:u\times\dfrac{\sqrt3}{2}=u\:cos\theta

\sf:\implies\:cos\theta=\dfrac{\sqrt3}{2}

\sf:\implies\:\theta=cos^{-1}\dfrac{\sqrt3}{2}

:\implies\:\underline{\boxed{\bf{\purple{\theta=30^{\circ}}}}}

♦ Range of projectile :

\sf:\implies\:R=\dfrac{u^2\:sin2\theta}{g}

  • u denotes initial velocity
  • R denotes range
  • g denotes acceleration
  • θ denotes angle of projection

\sf:\implies\:R=\dfrac{u^2\:sin2(30^{\circ})}{g}

\sf:\implies\:R=\dfrac{u^2\:sin60^{\circ}}{g}

:\implies\:\underline{\boxed{\bf{\orange{R=\dfrac{\sqrt3u^2}{2g}}}}}

Answered by Anonymous
2

Given :

The velocity at maximum height of a projectile is √3/2 times initial velocity of projection.

To Find :

Range of the projectile.

Solution :

❖ First of all, we need to find angle of projection.

\sf:\implies\:Initial\:Velocity\times\dfrac{\sqrt3}{2}=Velocity\:at\:max.\:height

\sf:\implies\:u\times\dfrac{\sqrt3}{2}=u\:cos\theta

\sf:\implies\:cos\theta=\dfrac{\sqrt3}{2}

\sf:\implies\:\theta=cos^{-1}\dfrac{\sqrt3}{2}

:\implies\:\underline{\boxed{\bf{\purple{\theta=30^{\circ}}}}}

♦ Range of projectile :

\sf:\implies\:R=\dfrac{u^2\:sin2\theta}{g}

u denotes initial velocity

R denotes range

g denotes acceleration

θ denotes angle of projection

\sf:\implies\:R=\dfrac{u^2\:sin2(30^{\circ})}{g}

\sf:\implies\:R=\dfrac{u^2\:sin60^{\circ}}{g}

:\implies\:\underline{\boxed{\bf{\orange{R=\dfrac{\sqrt3u^2}{2g}}}}}

Similar questions