Physics, asked by mauryaritika6, 7 months ago

the velocity displacement equation of any particle is v=
 \sqrt{180 - 16x}  \sqrt{ \sqrt \sqrt{?} } }  \times \frac{?}{?}
where v and x are in SI unit .so find the acceleration of the particle ​

Answers

Answered by Anonymous
30

Answer:

 \boxed{\mathfrak{Acceleration = -8 \ m/s^2}}

Given:

Velocity (v) w.r.t displacement (x) of any particle:

 \rm v =  \sqrt{180 - 16x}

To Find:

Acceleration (a) of the particle

Explanation:

Rate of change of velocity w.r.t time is equal to acceleration:

 \rm \implies a =  \frac{dv}{dt}  \\  \\  \rm \implies a = \frac{dv}{dt}  \times  \frac{dx}{dx}  \\  \\  \rm \implies a = \frac{dx}{dt}  \times  \frac{dv}{dx}  \\  \\  \rm  \frac{dx}{dt} = v :   \\  \rm \implies a =v \frac{dv}{dx}  \\ \\   \rm v =  \sqrt{180 - 16x}  :  \\   \rm \implies a = (\sqrt{180 - 16x} )  \times \frac{d( \sqrt{180 - 16x} )}{dx}  \\  \\  \rm \implies a =  \cancel{\sqrt{180 - 16x}}  \times  \frac{ - 16}{2 \cancel{ \sqrt{180 - 16x} }}  \\  \\  \rm \implies a =  - \frac{16}{2}  \\  \\  \rm \implies a = - 8 \: m/s^2

 \therefore

Acceleration (a) of the particle = -8 m/s²

Answered by incognito564
5

Answer:

a = vdv/dx

= √(180 -16x) × d(√(180 - 16x))/dx

= -16/2

= -8 ms^-2

Similar questions