Physics, asked by sagacioux, 1 month ago

The velocity of a body changes from 65 m/s - 98 m/s by Time of 12 s . What is distance covered by body if acceleration is 2.75 m/s2.​

Answers

Answered by MяMαgıcıαη
15

Given :

  • Initial velocity of a body (u) = 65 m/s
  • Final velocity of a body (v) = 98 m/s
  • Time taken by body (t) = 12 seconds
  • Acceleration of body (a) = 2.75 m/s²

To Find :

  • Distance covered by body (s)?

Solution :

Using second eqⁿ of motion. We know that;

\hookrightarrow\:{\large{\boxed{\sf{s = ut + \dfrac{1}{2}at^2}}}}

\spadesuit Putting all values :

\longmapsto\:\tt s = (65\:\times\:12) + \dfrac{1}{2}\:\times\:2.75\:\times\:(12)^2

\longmapsto\:\tt s = 780 + \dfrac{1}{\cancel{2}}\:\times\:2.75\:\times\:\cancel{144}

\longmapsto\:\tt s = 780 + 2.75\:\times\:72

\longmapsto\:\tt s = 780 + 198

\purple{\longmapsto}\:{\large{\underline{\boxed{\bf{\blue{s} \pink{=} \red{978}\:\green{m}}}}}}

Hence, distance covered by a body is 978 meters.

Learn More :

\spadesuit Three equations of motion :

  1. v = u + at
  2. s = ut + ½ at²
  3. v² = u² + 2as

Where,

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time taken
  • s denotes distance covered

\spadesuit Some important definitions :

  • Acceleration

Acceleration is the process where velocity changes. Since, velocity is the speed and it has some direction. So, change in velocity is considered as acceleration.

  • Initial velocity

Initial velocity is the velocity of the object before the effect of acceleration.

  • Final velocity

After the effect of acceleration, velocity of the object changes. The new velocity gained by the object is known as final velocity.

  • Distance covered

The total path length covered by an object is known as distance covered.

▬▬▬▬▬▬▬▬▬▬▬▬

Answered by MrSnappy
22

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

---------------------------------------------

 \large \bold  \red{⚘\underline{ \underline{Given :-}}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{Initial  \: velocity   \: (u) = 65 m/s}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{Final  \: velocity  \: (v) = 98 m/s}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{Time \:  taken  \: (t) = 12 \:  seconds}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{Acceleration \:  (a) = 2.75 m/s²}

 \large \bold  \red{⚘\underline{ \underline{To \:  Find : - }}}

 \bold{Distance }

 \large \bold  \red{⚘\underline{ \underline{Solution :-}}}

 \bold{By  \: Using  \: 2  \: equation  \: of  \: motion }

---------------------------------------------

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

---------------------------------------------

 \pink➸\:{\large{ \underline{\tt{s = ut + \dfrac{1}{2}at^2}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red➭\:\bold s = 65\:\times\:12 + \dfrac{1}{2}\:\times\:2.75\:\times\:(12)^2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red➭\:\bold s = 780 + \dfrac{1}{\cancel{2}}\:\times\:2.75\:\times\:\cancel{144}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\red➭\:\bold s = 780 + 2.75\times\:72

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red➭\:\bold s = 780 + 198

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \dashrightarrow \underline{ \boxed{ \frak \pink{s = 980 \:  m}}} \bigstar

---------------------------------------------

Concept Used here:-

\pink{\large \qquad \boxed{\boxed{\begin{array}{cc} \bigstar \: \: \bf v = u + at \\ \\ \bigstar\boxed{ \bf s = ut + \dfrac{1}{2}a {t}^{2} }\\ \\ \bigstar\: \: \bf{v}^{2} - {u}^{2} = 2as\end{array}}}}

---------------------------------------------

Similar questions