Physics, asked by chinnu09062003, 10 months ago

The velocity of a body is expressed as v =G*Mºre where G is gravitational constant, M is mass, R is radi
values of components a, b&c are​

Answers

Answered by shadowsabers03
2

Correct Question:-

The velocity of a body is expressed as \sf{v=G^a\,M^b\,R^c} where G is gravitational constant, M is mass and R is radius. Find values of \sf{a,\ b} and \sf{c.}

Solution:-

We're given,

\longrightarrow\sf{v=G^a\,M^b\,R^c}

Taking dimensions of each term,

\longrightarrow\sf{M^0L^1T^{-1}=\left(M^{-1}L^3T^{-2}\right)^a\,M^b\,L^c}

\longrightarrow\sf{M^0L^1T^{-1}=M^{-a+b}\,L^{3a+c}\,T^{-2a}

Equating powers of corresponding quantities, we get,

\longrightarrow\sf{-a+b=0}

\longrightarrow\sf{3a+c=1}

\longrightarrow\sf{-2a=-1}

On solving these three equations, we get,

\longrightarrow\underline{\underline{\sf{a=\dfrac{1}{2}}}}

\longrightarrow\underline{\underline{\sf{b=\dfrac{1}{2}}}}

\longrightarrow\underline{\underline{\sf{c=-\dfrac{1}{2}}}}

Similar questions