Physics, asked by sendebasmita2772, 1 year ago

The velocity of a body mass 20kg decreases from 20m/s to 5m/sin a distance of 100m .force on the body

Answers

Answered by Anonymous
36

\huge{\underline{\underline{\mathfrak{Answer \colon}}}}

From the Question,

  • Mass,m = 20 Kg

  • Initial Velocity,u = 20m/s

  • Final Velocity,v = 5m/s

  • Distance,s = 100m

To find

Force acting on the body

Using the Relation,

 \huge{ \boxed{ \boxed{ \sf{v {}^{2} = u {}^{2} + 2as  }}}}

Putting the values,we get:

 \sf{5 {}^{2}  = 20 {}^{2} + 2(100)a } \\  \\  \implies \:  \sf{25 = 400 + 200a} \\  \\  \implies \:  \sf{ - 375 = 200a} \\  \\  \implies \:  \underline{ \boxed{ \sf{a =  - 1.87ms {}^{ - 2} }}}

We Know that,

F = ma

Putting the values,we get:

 \sf{f = (20)( - 1.87)} \\  \\   \huge{ \sf{f = - 37.4 }}

Force acting on the body is -37.4 Newtons

Answered by ShivamKashyap08
37

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

m = 20 kg.

u = 20 m/s.

v = 5 m/s.

S = 100 m.

\huge{\bold{\underline{Explanation:-}}}

Applying third kinematic equation.

\large{\bold{v^2 - u^2 = 2as}}

Substituting the values.

\large{(5)^2 - (20)^2 = 2 \times a \times 100}

\large{25 - 400 = 200 \times a}

\large{a = \frac{- 375}{200}}

\large{\boxed{a = - 1.875 \: m/s^2}}

Applying Newton's second law.

\large{\bold{F = ma}}

Substituting the values.

\large{F = 20 \times - 1.875}

\large{F = - 37.5N}

Taking only magnitude.

\huge{\boxed{\boxed{F = 37.5N}}}

So, the force on body is 37.5N.

Similar questions