Physics, asked by sumitsinghmehra5222, 1 year ago

The velocity of a body of mass m revolving in a vertical circle of radius r at the lowest point 2✓2gr

Answers

Answered by Anonymous
3
wht I hv to find bro
Answered by bharathparasad577
0

Answer:

Concept:
Application of Newton's Laws of Motion

Explanation:

Given:

The velocity of a body of mass m

Revolving in a vertical circle of radius r

At the lowest point 2✓2gr
Find:

The minimum tension in the spring

Solution:

Refer to the image for the assumed vertical circle

                                 $$\begin{aligned}&\begin{aligned}&T^{\prime}+mg=\frac{m v^{2}}{R} \\&T^{\prime}=\frac{m v^{2}}{R}-mg \\&T-m y=\frac{m u^{2}}{R} \\&T=\frac{m v^{2}}{R}+mg\end{aligned}\end{aligned}$$

       Given,    $u &=2 \sqrt{2 g R} \\&=\sqrt{8 g R} \\$

                     work \ done \ by \ all &=k f-k i \\$\\$-m g(2 R) &=\frac{1}{2} m v^{2}-\frac{1}{2} m(8 g R) \\$\\

                               2 g R &=\frac{1}{2} v^{2} \\\\v^{2} &=4 g R

By substituting the v^{2} value in the &T^{\prime} equation,

                              $$\begin{aligned}&T^{\prime}=\frac{m(4 g R)}{R}m g \\&T^{\prime}=3 m g\end{aligned}$$

So, the tension will be 3mg

#SPJ3

Similar questions