Physics, asked by bebokijaan00987, 5 months ago

The velocity of a Bus is reduced uniformly from 15 m/s to 7 m/s while traveling a distance of 90 m.Compute the acceleration.

Answers

Answered by prince5132
82

GIVEN :-

  • Initial velocity ( u ) = 15 m/s.
  • Final velocity ( v ) = 7 m/s.
  • Distance covered ( s ) = 90 m.

TO FIND :-

  • The Acceleration ( a ).

SOLUTION :-

As we know that the third equation of motion,

 \\  : \implies \displaystyle \sf \: v ^{2}  - u ^{2}  = 2as \\  \\  \\

 : \implies \displaystyle \sf \: (7) ^{2}  - (15) ^{2}  = 2 \times a \times 90 \\  \\  \\

 : \implies \displaystyle \sf \: 49 - 225 = 180a \\  \\  \\

 : \implies \displaystyle \sf \:  - 176 = 180a \\  \\  \\

 : \implies \displaystyle \sf \: a =   \frac{ - 176}{180}  \\  \\  \\

 : \implies \underline{ \boxed{ \displaystyle \sf \: a  \approx - 0.97 \: ms ^{ - 2} }} \\

Hence the acceleration of the bus is -0.97 m/s².

[ Note :- -ve sign in the acceleration shows the retardation of the acceleration. ]

Answered by amazingbuddy
6

\tt \huge {\pink {Given}}

  • Initial velocity ( u ) = 15 m/s.
  • Final velocity ( v ) = 7 m/s.
  • Distance covered ( s ) = 90 m.

\tt \huge {\blue{To \: Find }}

  • Acceleration ( a ).

\tt \huge {\orange{solution }}

we know that ,

\begin{gathered} \\ : \implies \displaystyle \sf \: v ^{2} - u ^{2} = 2as   \end{gathered}

So ,

\begin{gathered} : \implies \displaystyle \sf \: (7) ^{2} - (15) ^{2} = 2 \times a \times 90 \end{gathered}

\begin{gathered} : \implies \displaystyle \sf \: 49 - 225 = 180a  \end{gathered}

\begin{gathered} : \implies \displaystyle \sf \: - 176 = 180a  \end{gathered}

\begin{gathered} : \implies \displaystyle \sf \: a = \frac{ - 176}{180}   \end{gathered}

\begin{gathered}  {\underline { \boxed{ \displaystyle \sf \: a \approx - 0.97 \: ms ^{ - 2} }}}\\ \end{gathered}

\tt {\green {So ,\: the \:acceleration \:of \:the\: bus\: is\ -0.97 m/s².}}

Similar questions