Physics, asked by namelessb0y, 6 months ago

The velocity of a particle is given by v = V0 sin er where v0 is constant and w = 2π/T find the average velocity in time interval t = 0 to t = T/2​

Answers

Answered by BrainlyTwinklingstar
15

Answer :

If the velocity is variable and depends on time time t, to find the average value of velocity for time interval t = t₁ to t = t₂

{ \leadsto{ \sf{ \bar{v} =  \dfrac{ \int \limits_{t_2}^{t_1} vdt }{ \int\limits_{t_2}^{t_1}dt} }}} \\

v = v\sf{_0}sinωt

t = t₁ = T/2

t = t₂ = 0

{ \leadsto{ \sf{ \bar{v} =  \dfrac{ \int \limits_{ 0 }^{T/2} v _{0} \sin( \omega t)  dt }{ \int\limits_{0}^{ T/2 }dt} }}} \\

{ \leadsto{ \sf{ \bar{v} =  \dfrac{  v _{0}  \dfrac{ | -  \cos ( \omega t)|_{ \tiny{ 0 }}^{ \tiny{ T/2 }} }{ \omega}  }{  |t|_{ \tiny{ 0 }}^{ \tiny{ T/2 }} =  \bigg( \dfrac{T}{2}   - 0 \bigg)} }}} \\

{ \leadsto{ \sf{ \bar{v}  =  \dfrac{2v _{0} }{ \omega tT}  \bigg[ \bigg \{ -  \cos \bigg( \dfrac{ \omega T }{2}  \bigg) \bigg \} -  \big \{ -  \cos(0)   \big \} \bigg]}}} \\

 { \leadsto{ \sf{ \bar{v} = \dfrac{2 v_{o}}{2\pi} \big( -  \cos\pi + 1 \big)  }}} \\

 { \leadsto{ \sf{ \bar{v} = \dfrac{ v_{o}}{\pi} \big( -  ( - 1) + 1 \big)  }}}  \:  \:  \:  \: ( \because \cos\pi =  \cos180 =  - 1 ) \\

 { \leadsto{ \sf{ \bar{v} = \dfrac{2 v_{o}}{\pi}  }}}

Similar questions