Physics, asked by Anonymous, 3 months ago

The velocity of a particle is given by v = v₀ sin ωt, where v₀ is constant and ω = 2π/T. Find the average velocity in time Interval t = 0 to t = T/2​

Answers

Answered by BrainlyWizzard
15

Given :-

  • v = v₀ sin ωt
  • ω = 2π/T
  • t = 0 to t = T/2

To find :-

  • Find the average velocity.

Let's Do...!!

\sf \: v =\dfrac{ ∫_{0} {}^{T/2} vdt}{ ∫_{0} {}^{T/2} dt} = \sf\dfrac{∫_{0} {}^{T/2}v_{0} \: sin \: wt.dt}{(\dfrac{t}{2})}

 \sf \purple{:\implies} \dfrac{2 \: v_{0}}{T} \ ∫_{0} {}^{T/2} \: sin(wt)dt

 \:  \:  \:  \:  \purple{: \implies}\sf\dfrac{2 \: v_{0}}{T}( \frac{ - cos \: wt}{w} {)}^{T/2} _{0}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{: \implies} \sf\dfrac{2 \: v_{0}}{wt}(1 - cos \:  \dfrac{wt}{2})

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \purple{: \implies} \sf \: w =  \dfrac{2\pi}{T} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{:\implies}\sf w \times\dfrac{T}{2} =  \cancel\dfrac{2\pi}{T} \times   \cancel\dfrac{2\pi}{T} = \pi

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \purple{: \implies}\sf\dfrac{2 \: v_{0}}{wt} \: (1 - cos\pi) = \dfrac{2 \: v_{0}}{2\pi} {}^{(2)}

Final answer is :

  \:  \:  \:  \:  \:  \:  \:  \:  \red⇝\boxed{\sf \: v = \sf\dfrac{2 \: v_{0}}{\pi}}

Answered by Sayantana
8

Concept:

》 Average velocity is defined as Total displacement covered between the time given.

\boxed{\bf{ v_{av} = \dfrac{\Delta x}{\Delta t} = \dfrac{dx}{dt}}}

Solution:

We will apply here simple integration!

\rm v = v_0 sin\omega t

\rm \dfrac{dx}{dt} = v_0 sin\omega t

\rm dx = (v_0 sin\omega t)dt

\rm \int dx = v_0 \int (sin\omega t)dt

\rm \int dx = \dfrac{v_0  \int -cos\omega t}{\omega}

\rm \Delta x = \dfrac{-v_0 \int _{0}^{T/2} cos\omega t}{\omega}

\rm \Delta x = \dfrac{-v_0}{\omega}(cos\dfrac{2\pi}{T}.\dfrac{T}{2})-(cos\dfrac{2\pi}{T} 0)

\rm \Delta x = \dfrac{-v_0}{\omega}(cos\pi - cos 0°)

\rm \Delta x = \dfrac{-v_0}{\omega}(-1 - 1)

\rm \Delta x = \dfrac{-v_0}{\omega}(-2)

\rm \Delta x = \dfrac{2v_0}{\omega}

--------

 \Delta t = \dfrac{T}{2} - 0

\rm v_{av} = \dfrac{\Delta x}{\Delta t}

\rm v_{av} = \dfrac{2v_0}{\omega (T/2 -0)}

\rm v_{av} = \dfrac{2v_0}{\dfrac{2\pi}{T}(T/2)}

\bf v_{av} = \dfrac{2v_0}{\pi}

-----------------------


Anonymous: Thanks for the AnsWer ! :)
Similar questions