The velocity of a particle of mass 500 g changes from 16 m/s to 24 m/s in 4 seconds. Assuming that a constant force acts on it, find the magnitude of the force.
Answers
Answer:
GiveN :
Mass (m) = 500 g = 0.5 kg
Initial velocity (u) = 16 m/s
Final velocity (v) = 24 m/s
Time interview (t) = 4 s
To FinD :
Magnitude of Force
SolutioN :
Use 1st equation of motion :
\begin{gathered}\\ \implies \sf{v \: = \: u \: + \: at} \\ \\ \\ \implies \sf{24 \: = \: 16 \: + \: a \: \times \: 4} \\ \\ \\ \implies \sf{4a \: = \: 24 \: - \: 16} \\ \\ \\ \implies \sf{4a \: = \: 8} \\ \\ \\ \implies \sf{a \: = \: \dfrac{8}{4}} \\ \\ \\ \implies \sf{a \: = \: 2} \\ \\ \\ \longrightarrow \underline{\boxed{\sf{Acceleration \: (a) \: = \: 2 \: ms^{-2}}}} \\ \end{gathered}
⟹v=u+at
⟹24=16+a×4
⟹4a=24−16
⟹4a=8
⟹a=
4
8
⟹a=2
⟶
Acceleration(a)=2ms
−2
___________________________
Now, use formula for Force :
\begin{gathered}\\ \implies \sf{F \: = \: ma} \\ \\ \\ \implies \sf{F \: = \: 0.5 \: \times \: 2} \\ \\ \\ \implies \sf{F \: = \: 1} \\ \\ \\ \longrightarrow \underline{\boxed{\sf{Force \: = \: 1 \: N}}}\end{gathered}
⟹F=ma
⟹F=0.5×2
⟹F=1
⟶
Force=1N
Answer:
follow me
make as brainliest ans
likes my All ans
ok
Explanation:
GiveN :
Mass (m) = 500 g = 0.5 kg
Initial velocity (u) = 16 m/s
Final velocity (v) = 24 m/s
Time interview (t) = 4 s
To FinD :
Magnitude of Force
SolutioN :
Use 1st equation of motion :
⟹v=u+at
⟹24=16+a×4
⟹4a=24−16
⟹4a=8
⟹a= 8/4
⟹a=2
⟶
Acceleration(a)=2ms
−2
___________________________
Now, use formula for Force :
⟹F=ma
⟹F=0.5×2
⟹F=1
⟶
Force=1N