The velocity of a projectile when it is half of the maximum height is√5/2 times of velocity at its highest point. The angle of projection is
Answers
Answer:
Hey mate here your answer
Explanation:
Let us consider that the maximum height covered by the projectile is H and the angle of projection is θ.
It is given that,
v_{H}=\sqrt{\frac{2}{5}} v_{H / 2}v
H
=
5
2
v
H/2
So the maximum height of a projectile motion can be found as
H=\frac{u^{2} \sin ^{2} \theta}{2 g} \quad \rightarrow(1)H=
2g
u
2
sin
2
θ
→(1)
In the above equation, u is the initial velocity and g is the acceleration due to gravity.
We know that velocity at maximum height is v_{H}=u \cos \thetav
H
=ucosθ
Squaring on both sides, we get v_{H}^{2}=u^{2} \cos ^{2} \theta \quad \rightarrow(2)v
H
2
=u
2
cos
2
θ→(2)
From Newton’s second law of motion:
v^{2}=u^{2}-2 a s \quad \rightarrow(3)v
2
=u
2
−2as→(3)
We can substitute v=v_{H / 2}v=v
H/2
, as the velocity at half the maximum height and displacement (s) can be replaced by half the maximum height, i.e., \mathrm{s}=\mathrm{H} / 2\ in\ (3)s=H/2 in (3)
v_{H / 2}^{2}=u^{2}-2 g\left(\frac{H}{2}\right) \quad \rightarrow(4)v
H/2
2
=u
2
−2g(
2
H
)→(4)
The H in eqn (4) can be replaced with the value of H in eqn (1)
v_{H / 2}^{2}=u^{2}-2 g\left(\frac{\frac{u^{2} \sin ^{2} \theta}{2 g}}{2}\right) \quad \rightarrow(5)v
H/2
2
=u
2
−2g(
2
2g
u
2
sin
2
θ
)→(5)
v_{H / 2}^{2}=u^{2}-2 g\left(\frac{u^{2} \sin ^{2} \theta}{4 g}\right) \quad \rightarrow(6)v
H/2
2
=u
2
−2g(
4g
u
2
sin
2
θ
)→(6)
It is given that v_{H}=\sqrt{\frac{2}{5}} v_{H / 2}v
H
=
5
2
v
H/2
So squaring on both sides, we get
v_{H}^{2}=\frac{2}{5} v_{H / 2}^{2} \rightarrow(7)v
H
2
=
5
2
v
H/2
2
→(7)
So, substitute eqn (2) and eqn (6) in eqn (7)
u^{2} \cos ^{2} \theta=\frac{2}{5}\left[u^{2}-2 g\left(\frac{u^{2} \sin ^{2} \theta}{4 g}\right)\right]u
2
cos
2
θ=
5
2
[u
2
−2g(
4g
u
2
sin
2
θ
)]
(We know that, \cos ^{2} \theta+\sin ^{2} \theta=1cos
2
θ+sin
2
θ=1 )
\therefore u^{2}\left(1-\sin ^{2} \theta\right)=\frac{2 u^{2}}{5}\left[1-2\left(\frac{\sin ^{2} \theta}{4}\right)\right]∴u
2
(1−sin
2
θ)=
5
2u
2
[1−2(
4
sin
2
θ
)]
\left(1-\sin ^{2} \theta\right)=\frac{2}{5}\left[1-\left(\frac{\sin ^{2} \theta}{2}\right)\right](1−sin
2
θ)=
5
2
[1−(
2
sin
2
θ
)]
1-\sin ^{2} \theta=\frac{2}{5}-\frac{1}{5} \sin ^{2} \theta1−sin
2
θ=
5
2
−
5
1
sin
2
θ
\frac{1}{5} \sin ^{2} \theta-\sin ^{2} \theta=\frac{2}{5}-1
5
1
sin
2
θ−sin
2
θ=
5
2
−1
-\frac{4}{5} \sin ^{2} \theta=-\frac{3}{5}−
5
4
sin
2
θ=−
5
3
\sin ^{2} \theta=\frac{3}{5} \times \frac{5}{4}sin
2
θ=
5
3
×
4
5
\sin ^{2} \theta=\frac{3}{4}sin
2
θ=
4
3
\therefore \sin \theta=\frac{\sqrt{3}}{2}∴sinθ=
2
3
\bold{\therefore \theta=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ}}∴θ=sin
−1
(
2
3
)=60
∘
Thus the angle of projection is 60°.
The angle of projection is :
θ =
Given:
The velocity of a projectile when it is half of the maximum height is√5/2 times of velocity at its highest point.
To Find:
The angle of projection.
Solution:
Time taken to reach max height = usinθ/g
Max height = θ/2g
Half the max height = θ/4g
Vertical velocity at half max height = usinθ/
Velocity at half the max-height
=
=> ucosθ = /2
=> θ = /2 ()(1 - θ + )
=> 2( 1 - θ ) = - θ
=> sinθ =
Hence , the angle of projection is :
θ =
#SPJ3