Physics, asked by aditya2020222003, 1 year ago

the velocity of transverse waves along a string may depend upon the length L of the string ,tension F in the string and mass per unit length M of the string. Derive a possible formula for the velocity dimensionally.

Answers

Answered by Anonymous
251
 \textsf{\underline {\Large{Deducing Relations}}} :

Given, Velocity  \mathsf{(\:m{s} ^{-1}\:)} depends upon length L, tension F and mass M.

Let  \mathsf{v\:{\propto{\:{l} ^{a} \:{F} ^{b} \:{M{L} ^{-1}} ^{c}}}}

Now, \boxed{\mathsf{v\:=\:k\:{l} ^{a} \:{F} ^{b} \:{M{L} ^{-1}} ^{c}}} ↪️( i )

Here, K is a constant which is dimensionless.

Dimension of v =  \mathsf{[L{T} ^{-1}]}

Dimension of l =  \mathsf{[L]}

Dimension of F = \mathsf{[ML{T} ^{-2}]}

Dimension of M per unit length = \mathsf{[M{L} ^{-1}]}

Substituting these dimensions in equation ( i ),

 \mathsf{v\:=\:{l} ^{a} \:{F} ^{b} \:{M{L} ^{-1}} ^{c}}

 \mathsf{[{M} ^{0}L{T} ^{-1}]\:=\:{[L]}^{a} \:{[ML{T} ^{-2}]} ^{b} \:{[M{L} ^{-1}]} ^{c}}

 \mathsf{[{M}^{0}L{T} ^{-1}]\:=\: {[L]}^{a} \:[{M} ^{b} {L} ^{b} {T} ^{-2b}]\:{[M]} ^{c}{[{L} ^{-1}]} ^{c}}

 \mathsf{[{M}^{0}L{T} ^{-1}]\:=\: [{M} ^{b\:+\:c}] \:[{L} ^{a\:+\:b\:-\:c}] \:[{T} ^{-2b}]}

Now, Comparing powers of M, L and T in both side,

 \mathsf{[{M}^{0}] \:=\:[{M} ^{b\:+\:c}]}

↪️ b + c = 0

↪️ b = - c --> ( 1 )

 \mathsf{[{L}^{1}] \:=\:[{L}^{a\:+\:b\:-\:c}]}

↪️ 1 = a + b - c

↪️ 1 = a + 2b --> ( 2 )

 \mathsf{[{T}^{-1}] \:=\:[{T}^{-2b}]}

↪️ - 1 = - 2b

➡️ b =  \mathsf{\dfrac{1}{2}}

Putting value of ' b ' in equation ( 2 ),

↪️ 1 = 2b + a

↪️ 1 = a + 2  \mathsf{\dfrac{1}{2}}

↪️ a = 1 - 1

➡️ a = 0

Putting value of ' a ' in equation ( 1 ),

↪️ b = - c

↪️ c = - b

➡️ c = -  \mathsf{\dfrac{1}{2}}

Equating these valued of 'a', ' b', ' c ' , in equation ( i ),

 \mathsf{v\:=\:k\:{l} ^{a} \:{F} ^{b} \:{M} ^{c}}

 \mathsf{v\:=\:k\:{l} ^{\tiny{0}} \:{F} ^{\tiny{\dfrac{1}{2}}} \:{M} ^{\tiny{\dfrac{-1}{2}}}}

➡️  \boxed{\mathsf{v\:=\:k\:{\sqrt{\dfrac{F}{M}}}}}

Anonymous: Awesome keep it up
Anonymous: Thanks :-)
Answered by chaudhuriekorshi
56

ANSWER TO THE PROBLEM GIVEN BELOW .PLEASE GIVE THANKS IF YOU ARE HELPED.

THANK YOU.

Attachments:
Similar questions