Physics, asked by saichintu31, 1 year ago

the velocity time graph represent motion of a cyclist along straight line find the total distance travelled acceleration retardation average velocity​

Attachments:

Answers

Answered by ShivamKashyap08
7

\huge{\bold{\underline{\underline{Solution:-}}}}

\large{\bold{\underline{To Find}}}

  • Distance travelled =?.
  • Acceleration = ?.
  • Retardation = ?.
  • Average velocity = ?.

\large{\bold{\underline{\underline{Step - by - Step - Explanation}}}}

  • Case-1

Distance =?.

As you know the area under velocity time graph gives distance.

So,

{S = ar( \triangle)AOD + ar( \triangle)BEC + ar( \square)ABDE}

{S = \frac{1}{2} \times AD \times OD + \frac{1}{2} \times BE \times EC + DE  \times BE}

{ \therefore S = \frac{1}{2} \times 40 \times 5 + \frac{1}{2} \times 40 \times 2 + 2 \times 40}

{S = 20 \times 5 + 20 \times 2 + 40 \times 2}

{S = 100 + 40 + 80}

\huge{\boxed{\boxed{S = 220 \: metres}}}

  • Case-2

Acceleration = ?.

Slope of velocity time graph gives acceleration.

so,

\huge{a = \frac{y_2 - y_1}{x_2 - x_1}}

{ \therefore a = \frac{ 40 - 0}{5 -0}}

{ \therefore a = \frac{40}{5}}

\huge{\boxed{\boxed{a = 8 m/s^2}}}

  • Case-3

Retardation = ?.

Slope of velocity time graph gives retardation.

so,

\huge{r = \frac{y_2 - y_1}{x_2 - x_1}}

{ \therefore r = \frac{ 0 - 40}{11 -7}}

{ \therefore r = \frac{-40}{2}}

\huge{\boxed{\boxed{r = - 20 m/s^2}}}

  • Case-4

Average velocity = ?.

{Average \: velocity = \frac{Total \: distance}{Total \: Time}}

{ \therefore v_{av} = \frac{220}{11}}

\huge{\boxed{\boxed{v_{av} = 20 m/s}}}

Similar questions