Physics, asked by texastiger48, 6 months ago

The velocity V of a particle depends on time 't' as V = At2
+ Bt. Find the dimensions and units of A and B.

Answers

Answered by dna63
53

Explanation:

We have,

\sf{V = At^{2}+Bt}

Dimensions of LHS = Dimensions of RHS

\sf{[V] = [At^{2}+Bt]}

Ac. to the principle of homogeneity,,

Dimensions of At² = Dimensions of Bt

\sf{\implies{[At^{2}]=[Bt]}}

\sf{\implies{[A][T^{2}]=[B][T]}}

\sf{\implies{\frac{[A][T^{2}]}{[T]}=[B]}}

\sf{\implies{[B]=[A][T] ........(i)}}

Therefore,,

\sf{[V] = [At^{2}]}

\sf{\implies{[M^{0}L^{1}T^{-1}] = [A][T^{2}]}}

\sf{\implies{\frac{[M^{0}L^{1}T^{-1}]}{T^{2}} = [A]}}

\sf{\implies{\boxed{\sf{[A]=[M^{0}L^{1}T^{-3}]}}}}

Substituting value of [A] in eqn. (i),

We get,

\sf{[B]=[M^{0}L^{1}T^{-3}][T] }

\sf{\implies{\boxed{\sf{[B]=[M^{0}L^{1}T^{-2}]}} }}

Hence, Dimensions of A,

\sf{\boxed{\to{\sf{[A]=[M^{0}L^{1}T^{-3}]}}} }

And Dimensions of B,

\sf{\boxed{\to{\sf{[B]=[M^{0}L^{1}T^{-2}]}}} }

_________________________________

HOPE IT HELPS ❣️❣️❣️

Answered by nirman95
35

Given:

v = At² + Bt

To find:

Unit and dimensions of

  • A and B

Calculation:

The dimensions of LHS and RHS of any equation have to be equal.

 \rm[v] = [A {t}^{2} ]

 \rm \implies [L{T}^{ - 1} ] = [A {T}^{2} ]

 \rm \implies [A] = [{M }^{0} L{T}^{ - 3} ]

  • So, unit of A is metre/sec³.

 \rm[v] = [B t ]

 \rm \implies [L{T}^{ - 1} ] = [BT ]

 \rm \implies[B] = [{M}^{0} L{T}^{ - 2} ]

  • So, unit of B is metre/sec².
Similar questions