the vertical height of the conical tent is14 m and the diameter of its base is 18 m. how many persons can it accumulateif each person is to be allowed 108 m^3 of space.
Answers
Answered by
29
AnswEr:-
❀ Your Answer Is 11 persons.
ExplanaTion:-
Given:-
- Vertical height of a cone = 14 m
- Diameter of base = 18 m.
- So its radius = 18/2 m = 9 m.
- Space allowed to one person = 108 m³.
See the diagram below:-
To Find:-
- How many person can the tent accumulate.
Formula Used:-
Where,
- V = Volume of a cone.
- r = Radius of the Cone.
- h = Height of the cone.
So Here,
- r = 9 m.
- h = 14 m.
Therefore,
Now,
It is given that one person occupy 108 m³ of space and we have to find out how many people can occupy 1188 m³ of space so lets find out:-
11 persons can accumulate in the given tent.
Answered by
101
▪ The vertical height of the conical tent is 14 cm and the diameter of its base is 18 m. How many persons can it accumulate, if each person is to be allowed 108 m^3 of space??
▪ putting the above given values in the formula.....
▪ it's given that the volume occupied by each person is 108 m^3
Similar questions