Math, asked by BSivanagalokesh, 1 year ago

the vertices of a triangle are (0,0),(root3,3),(-root3,3) then the incenter is​

Answers

Answered by itzselfiequeen25
9

Answer:

see the attachment

hope it helps you

Attachments:
Answered by pruthaasl
0

Answer:

The coordinates of the incenter are (0, 2).

Step-by-step explanation:

Given:

A = (0, 0), B = (√3, 3), C = (-√3, 3)

To find:

Incenter of the triangle (I)

Formula:

I = (\frac{ax_{1}+bx_{2}+cx_{3}   }{a+b+c}, \frac{ay_{1}+by_{2}+cy_{3}   }{a+b+c})

Step 1:

Consider the triangle ΔABC with vertices A(0, 0), B(√3, 3), and C(-√3, 3).

We know that the distance between two points is given as

D = \sqrt{(x_{1}-x_{2}  )^{2} + (y_{1}-y_{2}  )^{2} }

Using this formula to find the lengths of side AB, side BC, and side AC.

AB = \sqrt{(\sqrt{3} -0  )^{2} + (3-0  )^{2} }

AB = \sqrt{(\sqrt{3}   )^{2} + (3 )^{2} }

AB = \sqrt{3+9 }

AB = \sqrt{12 }

AB = 2\sqrt{3}

AB = 2√3 units

BC = \sqrt{(-\sqrt{3} -\sqrt{3}   )^{2} + (3-3 )^{2} }

BC = \sqrt{(-2\sqrt{3} )^{2} +0 }

BC = \sqrt{4*3} }

BC = \sqrt{12 }

BC = 2\sqrt{3}

BC =  2√3 units

AC = \sqrt{(-\sqrt{3} -0)^{2} + (3-0 )^{2} }

AC = \sqrt{(-\sqrt{3} )^{2} + (3)^{2} }

AC = \sqrt{3 + 9 }

AC = \sqrt{12}

AC=2\sqrt{3}

AC = 2√3 units

Step 2:

Since, AB = BC = AC, ΔABC is an equilateral triangle.

Therefore, the incenter is given as

I = (\frac{ax_{1}+bx_{2}+cx_{3}   }{a+b+c}, \frac{ay_{1}+by_{2}+cy_{3}   }{a+b+c}), where a = side BC, b = side AC, and c = side AB.

Substituting the values, we get

I = (\frac{(2\sqrt{3})(0)+(2\sqrt{3})(\sqrt{3}) +(2\sqrt{3})(-\sqrt{3} )}{2\sqrt{3} +2\sqrt{3}+2\sqrt{3}}, \frac{(2\sqrt{3})(0)+(2\sqrt{3})(3)+(2\sqrt{3})(3)  }{2\sqrt{3} +2\sqrt{3}+2\sqrt{3}})

I=(\frac{0+6-6}{6\sqrt{3} } , \frac{0+6\sqrt{3}+6\sqrt{3}  }{6\sqrt{3\\} } )

I=( 0 , \frac{12\sqrt{3} }{6\sqrt{3} }   )

I = (0,2)

Therefore, the incenter of the given triangle is at (0, 2).

#SPJ2

Attachments:
Similar questions