the vertices of a triangle are (1,√3),(2cos teeta,2sin teeta) and (2sin teeta,-2 cos teeta) where teeta€R. the locus of ortho centre of the triangl
Answers
Given:
The vertices of a triangle are (1,√3),(2cos teeta,2sin teeta) and (2sin teeta,-2 cos teeta) where teeta€R.
To find:
The locus of orthocentre of the triangle
Solution:
From given, we have,
The vertices of a triangle are (1,√3),(2cos teeta, 2sin teeta) and (2sin teeta,-2 cos teeta)
Let O(0, 0) be the circumceter
A (1,√3), B (2cos teeta, 2sin teeta) and C (2sin teeta,-2 cos teeta)
OA = √(1 + 3) = 2
OB = √[2² cos² ∅ + 2² sin² Ф] = 2
OC = √[(-2)² cos² ∅ + (-2)² sin² Ф] = 2
G = [(1+2 cos Ф + 2 sin Ф)/3 , (√3-2 cos Ф + 2 sin Ф)/3]
⇒ G = h/3, k/3
∴ h = 1+2 cos Ф + 2 sin Ф
⇒ h - 1 = 2 (cos Ф + sin Ф) ...........(1)
∴ k = √3-2 cos Ф + 2 sin Ф
⇒ k - √3 = 2(sin Ф - cos Ф) ..........(2)
squaring and adding equations (1) and (2), we get,
(h - 1)² + (k - √3)² = [2 (cos Ф + sin Ф)]² + [2(sin Ф - cos Ф)]²
(h - 1)² + (k - √3)² = 8
⇒ (x - 1)² + (y - √3)² = 8
∴ (x - 1)² + (y - √3)² = 8 is the locus of the orthocenter of triangle