Math, asked by kushal480, 1 year ago

the vertices of a triangle are (2,1),(5,2) and (4,4). find the length of the perpendicular from the first vertex to the opposite side​

Answers

Answered by wifilethbridge
3

Answer:

3.13 units

Step-by-step explanation:

A=(x_1,y_1)=(2,1)

B=(x_2,y_2)=(5,2)

C=(x_3,y_3)=(4,4)

First find length of sides of triangle

Formula :d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

A=(x_1,y_1)=(2,1)

B=(x_2,y_2)=(5,2)

AB=\sqrt{(5-2)^2+(2-1)^2}

AB=3.162

B=(x_1,y_1)=(5,2)

C=(x_2,y_2)=(4,4)

BC=\sqrt{(4-5)^2+(4-2)^2}

BC=2.236

A=(x_1,y_1)=(2,1)

C=(x_2,y_2)=(4,4)

AC=\sqrt{(4-2)^2+(4-1)^2}

AC=3.605

Now to find area of triangle

a = 3.162

b = 2.236

c =3.605

Area=\sqrt{(s(s-a)(s-b)(s-c)}

s=\frac{a+b+c}{2}

s=\frac{3.162+2.236+3.605}{2}

s=4.5015

Area=\sqrt{4.5015(4.5015-3.162)(4.5015-2.236)(4.5015-3.605)}

Area=3.4995

The base corresponding to point A is BC

So, To find length  of the perpendicular from the first vertex to the opposite side​

Area of triangle = \frac{1}{2} \times Base \times Height

3.4995=\frac{1}{2} \times 2.236 \times Height

Height=3.13

Hence the length of the perpendicular from the first vertex to the opposite side​ is 3.13 units

Similar questions