Math, asked by aleenraju2002, 1 year ago

The vertices of a triangle are A(-1,3), B(1,-1) and C(5,1). Find the length of the median through the vertex C

Answers

Answered by siddhartharao77
322
In a triangle of ABC. Let the midpoint be D which lies in between B and C

So, D = (1+5/2, -1+1/2) = (3,0)

So, Length of median = root of (-1-3)^2  + (3-0)^2

                                    = root of (4)^2 + (3)^2

                                   = root 16 + 9

                                   = root 25

                                   = 5


Hope this helps!
Answered by ssanskriti1107
1

Answer:

The length of the median through the vertex C is 5 units.

Step-by-step explanation:

Given :    Coordinates of  A=(-1,3)   =(x_{1} , y{1} )

               Coordinates of B=(1,-1)    =(x_{2} , y{2} )

                Coordinates of C=(5,1)     =(x_{3} , y{3} )

To Find :  The length of the median through the vertex C

We know that the median through the vertex C will meet the side AB at its mid-point.

Let the mid-point on side AB be the point D with coordinates (x,y) .

\implies D= (x,y)=\frac{x_{1} + x_{2} }{2}  , \frac{y_{1} + y_{2} }{2}

                =\frac{(-1)+1}{2}  ,  \frac{3+(-1)}{2}

                =(0,1)

Now,

Length of median through point C  = Distance between vertex C and  D                        

                                                           = Distance between (5,1)and  (0,1)

Therefore,

Length of median = \sqrt{(0-5)^{2} + (1-1)^{2} }

                             =\sqrt{5^{2} }

                             =5 units

Hence, the length of the median through the vertex C is 5 units.

#SPJ2

Similar questions