The vertices of the feasible region of L.P.P. are A (6, 0), B (3, 1), C (1, 3), D (0, 6), E (7, 0), F (0, 7), G (7, 7) and its objective function Z = 2000 x + 1600 y. Find maximum value of objective function Z.
Answers
Answered by
0
Answer:
Step-by-step explanation:
Z= 25,200
Given,
Z = 2000 x + 1600 y
A(6,0), B(3,1), C(1,3), D(0,6), E(7,0), F(0,7), G(7,7)
To Find,
Maximum value of objective function Z.
Solution,
The value of objective function Z = 2000 x + 1600 y at
- A(6,0)
Z(A)= 2000(6) + 1600(0)
= 12,000
- B(3,1)
- Z(B)= 2000(3) + 1600(1)
- = 6000 + 1600
- =
- 7,600
- C(1,3)
Z(C)= 2000(1) + 1600(3)
- = 2000 + 4800
- =
- 6,800
- D(0,6)
- Z(D)= 2000(0) + 1600(6)
- =
- 9,600
- E(7,0)
- Z(E)= 2000(7) + 1600(0)
- = 14,000
- F(0,7)
- Z(F)= 2000(0) + 1600(7)
= 11,200
- G(7,7)
- Z(G)= 2000(7) + 1600(7)
- = 14000 + 11200
- =
- 25,200
Therefore, The maximum value of objective Z = 25,200 at vertices G(7,7).
Similar questions