The vertices of triangle PQR are P(2 1) Q (-2 3) and R (4 5) find the equation of median through the vertex R
Answers
Answered by
3
Given that
PQR is a triangle whose vertices are P (2,1),Q (-2,3) and R (4,5).
Using distance formula
PQ=root (-2-2)^2+(3-1)^2
=root (-4)^2+(2)^2
=root (8+4)=root 12=2root3
R is the median at PQ
Then PL=LQ
Using mid point formula
P (2,1) and Q (-2,3)
x1=2 x2=-2
y1=1 y2=3
x1+x2/2 , y1+y2/2
2+(-2)/2 , 1+3/2
0/2 , 4/2
0,2
Hence L (0,2)
PQR is a triangle whose vertices are P (2,1),Q (-2,3) and R (4,5).
Using distance formula
PQ=root (-2-2)^2+(3-1)^2
=root (-4)^2+(2)^2
=root (8+4)=root 12=2root3
R is the median at PQ
Then PL=LQ
Using mid point formula
P (2,1) and Q (-2,3)
x1=2 x2=-2
y1=1 y2=3
x1+x2/2 , y1+y2/2
2+(-2)/2 , 1+3/2
0/2 , 4/2
0,2
Hence L (0,2)
Similar questions