Math, asked by salmankhan91, 1 year ago

the volum of hemisphere is 24251/3 cm find the curved surface area

Answers

Answered by Anonymous
2
HEY DEAR ... ✌️

______________________


______________________


Given : Volume of hemisphere = 2425 1/2 cu cm or 2425.5 cu cm.
Volume of hemisphere = 2/3πr³
2425.5 = 2/3*22/7*r³
r³ = (2425.5*21)/44
r³ = 50935.5/44
r³ = 1157.625
r = 10.5 cm
Now, 
Curved Surface Area of hemisphere = 2πr²
= 2*22/7*10.5*10.5
= 693 sq cm
CSA of hemisphere is 693 sq cm.


HOPE , IT HELPS ... ✌️
Answered by jaswasri2006
1

Given Data :-

 \tt volume \:  \:  \: of \:  \:  \: hemisphere \:  \:  =  \frac{24251}{3}  {cm}^{2}

 \\  \\

To find :-

Curved Surface Area of Hemisphere

 \\  \\  \\  \\

Solution :-

 \\  \\  \\

As we know that ,

  \boxed{ \boxed{\tt volume \:  \:  \: of \:  \:  \: hemisphere \:  \:  =  \frac{2}{3} \pi {r}^{3} }}

then ,

 \tt \frac{24251}{3}  =  \frac{2\pi {r}^{3} }{ 3}

 \tt2 \times  \frac{22}{7}  \times  {r}^{3}  = 24251

 \tt {r}^{ 3}  =  \frac{24251}{2}  \times  \frac{7}{22}  = 1157.625

 \huge \boxed{ \boxed{ \tt r = 10.5 \: cm}}

 \\  \\  \\

 \large \tt \binom{curved \:  \:  \: surface \:  \: area \:  \: of }{hemisphere}  = 2\pi {r}^{2}

 \tt  = 2 \times  \frac{22}{7}  \times 10.5 \times 10.5 \\  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt 2 \times 11 \times 3 \times 10.5 \\  =  \:  \:  \: 66 \times 10 .5 \\  = \huge \boxed{ \boxed{  \purple{\tt693 \:  \: {cm}^{2} }}}

Similar questions