Math, asked by Priyanshulohani, 9 months ago

The volume and CSA of a cylinder is 2310 cm and 660 cm respectively find its base radius and height​

Answers

Answered by silentlover45
34

\large\underline\pink{Given:-}

  • The volume and CSA of a cylinder is 2310 cm and 660 cm.

\large\underline\pink{To find:-}

  • Fine the the base radius and height ....?

\large\underline\pink{Solutions:-}

  • Volume of cylinder = 2310cm²
  • CSA of cylinder = 660cm²

CSA of cylinder = 2πrh

660 = 2 × 22/7 × rh

660 × 7 / 44 = rh

105 = rh

Volume of cylinder = πr²h

2310 = 22/7 × r × rh

2310 = 22/7 × r × 105

2310 × 7 / 22 × 105 = r

210 / 2 × 105 = r

14 / 2 = r

7 = r

r = 7cm

Now, putting the value of r in eq (i).

105 = rh

105 = 7 × h

105/7 = h

15 = h

h = 15cm

Hence, the base of radius is 7cm and height is 15cm.

Answered by Skyllen
21

Given:-

  • Volume of cylinder= 2310cm
  • CSA of cylinder = 660cm

To find:-

  • The base radius and height of cylinder.

Solution:-

 \sf \: CSA \: of \: cylinder = 660cm \\ \\   \sf \: 2\pi \: rh = 660 \\  \\  \sf \: 2 \times  \frac{22}{7}  \times rh = 660m \\ \\   \sf \: r \times h =  \frac{660 \times 7}{44}  \\ \\   \sf \: r \times h = 105.....eq.1

Now,

 \sf \implies \: Volume \: of \: cylinder = \pi \: r {}^{2} h \\  \\  \sf\implies \: 2310 =  \dfrac{22}{7}  \times r \times r \times h \\ \\   \sf\implies \: 2310  =  \dfrac{22}{7}  \times 105 \times r... (\because \: from \: eq.1) \\  \\  \sf\implies \: r =  \dfrac{2310 \times 7}{22 \times 105}   \\  \\  \sf\implies \: r =  \dfrac{735}{105}  \\   \\ \sf \: \implies  \boxed{\boxed{ \purple{ \bf{r = 7cm}}}}

Put r = 7cm in equation 1,

 \sf \:  \implies \: r \times h = 105 \\  \sf \implies 7 \times h = 105 \\ \sf \implies \: h =  \frac{105}{7}  \\ \sf \implies \:  \boxed{ \boxed{  \purple{\bf{h = 15cm}}}}

Similar questions