Computer Science, asked by arnav787, 10 months ago

The volume and curved surface area of a cylinder are 1650 cm and 660 em
respectively. Find the radius and height of cylinder.
CS
Find the
tio of
--​

Answers

Answered by Mysterioushine
14

QUESTION :-

The volume and curved surdace area of cylinder are 1650 cm³ and 660 cm² respectively.Find the radius and height of the cylinder.

GIVEN :-

  • Volume of cylinder = 1650 cm³
  • CSA of cylinder = 660 cm

TO FIND :-

  • Radius and height of the cylinder

SOLUTION :-

 \large {\underline {\boxed {\bigstar {\red {\sf{CSA\:  of \: cylinder = 2\pi  rh}}}}}}

We have ,

  • CSA = 660 cm²

 \implies \sf \: 2\pi rh = 660 \\  \\  \implies \sf \: 2 \times  \frac{22}{7}  \times rh = 660 \\  \\   \implies \sf \: rh =  \frac{660 \times 7}{2 \times  22}  \\  \\  \implies \sf \: rh = 105 \\  \\  \implies  {\underline {\boxed {\pink{\sf {\: h =   \frac{105}{r} }}}}}   \sf \: \longrightarrow \: eq(1)

 \large {\underline {\boxed {\bigstar {\red {\sf{ \: volume \: of \: cylinder = \pi {r}^{2} h}}}}}}

We are given ,

  • Volume of cylinder = 1650 cm³

 \implies \sf \: \pi  {r}^{2} h = 1650 \\  \\  \implies \sf \:  \frac{22}{7}  \times  {r}^{2}  \times  h = 1650 \\  \\   \implies \sf \:  {r}^{2} h = 1650 \times  \frac{7}{22}   \\  \\ \implies \sf \:  {r}^{2} h = 525

 \implies \sf \:  {r}^{2}  \bigg( \frac{105}{r}  \bigg) = 525 \\  \\  \implies \sf  \cancel{ {r}^{2}} \bigg( \frac{105}{ \cancel{r}}  \bigg) = 525 \\  \\  \implies \sf \:105r = 525 \\  \\  \implies \sf \: r =  \frac{525}{105}  \\  \\  \implies {\underline {\boxed {\blue {\sf \: r = 5 \: cm}}}}

From eq(1) ,

 \implies \sf \: h =  \frac{105}{r}  \\  \\  \implies \sf \: h =  \frac{105}{5}  \\  \\  \implies  {\underline {\boxed {\blue{\sf  {h = 21 \: cm}}}}}

∴ The radius and height of the cylinder are 5 cm and 21 cm

Answered by Anonymous
1

QUESTION :-

The volume and curved surdace area of cylinder are 1650 cm³ and 660 cm² respectively.Find the radius and height of the cylinder.

GIVEN :-

Volume of cylinder = 1650 cm³

CSA of cylinder = 660 cm

TO FIND :-

Radius and height of the cylinder

SOLUTION :-

 \large {\underline {\boxed {\bigstar {\red {\sf{CSA\:  of \: cylinder = 2\pi  rh}}}}}}

We have ,

CSA = 660 cm²

 \implies \sf \: 2\pi rh = 660 \\  \\  \implies \sf \: 2 \times  \frac{22}{7}  \times rh = 660 \\  \\   \implies \sf \: rh =  \frac{660 \times 7}{2 \times  22}  \\  \\  \implies \sf \: rh = 105 \\  \\  \implies  {\underline {\boxed {\pink{\sf {\: h =   \frac{105}{r} }}}}}   \sf \: \longrightarrow \: eq(1)

 \large {\underline {\boxed {\bigstar {\red {\sf{ \: volume \: of \: cylinder = \pi {r}^{2} h}}}}}}

We are given ,

Volume of cylinder = 1650 cm³

 \implies \sf \: \pi  {r}^{2} h = 1650 \\  \\  \implies \sf \:  \frac{22}{7}  \times  {r}^{2}  \times  h = 1650 \\  \\   \implies \sf \:  {r}^{2} h = 1650 \times  \frac{7}{22}   \\  \\ \implies \sf \:  {r}^{2} h = 525

 \implies \sf \:  {r}^{2}  \bigg( \frac{105}{r}  \bigg) = 525 \\  \\  \implies \sf  \cancel{ {r}^{2}} \bigg( \frac{105}{ \cancel{r}}  \bigg) = 525 \\  \\  \implies \sf \:105r = 525 \\  \\  \implies \sf \: r =  \frac{525}{105}  \\  \\  \implies {\underline {\boxed {\blue {\sf \: r = 5 \: cm}}}}

From eq(1) ,

 \implies \sf \: h =  \frac{105}{r}  \\  \\  \implies \sf \: h =  \frac{105}{5}  \\  \\  \implies  {\underline {\boxed {\blue{\sf  {h = 21 \: cm}}}}}

∴ The radius and height of the cylinder are 5 cm and 21 cm

Similar questions