Math, asked by sandeeppoonia281982, 9 months ago

The volume of a cone with circular base is
216πcm³. If the base radius isa
9 cm then the height
of
the cone is​

Answers

Answered by sethrollins13
33

Given :

  • Volume of the cone is 216π cm³.
  • Radius of the cone is 9cm.

To Find :

  • Height of Cone.

Solution :

\longmapsto\tt{Radius=9cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cone=\dfrac{1}{3}\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{216{\cancel{\pi}}=\dfrac{1}{3}{\cancel{\pi}}{{(9)}^{2}\times{h}}}

\longmapsto\tt{216\times{3}=81h}

\longmapsto\tt{648=81h}

\longmapsto\tt{h=\cancel\dfrac{647}{81}}

\longmapsto\tt\bf{h=8cm}

So , The height of Cone is 8cm..

_______________________

  • C.S.A of Cone = πrl
  • T.S.A of Cone = πrl(l+r)
  • Volume of Cone = 1/3πr²h

_______________________

Answered by shamirah555
0

Answer:

Step-by-step explanation:

V=πr²h/3

216πcm³=π9cm×9cm×h/3(you divide 3 by one 9)

216πcm³=π9cm×3cm×h

216πcm³/27πcm²=27πcm²h/27πcm²

8cm=h

therefore height is 8cm

pliz mark as brainiest if the answer helps you

Similar questions