Math, asked by semwalrishabh7, 2 months ago

The volume of a container is 0.9 m'. If it is 50 cm long and 120 cm wide, then find its depth.​

Answers

Answered by Mɪʀᴀᴄʟᴇʀʙ
70

Solution:-

Given:

Volume of a container = 0.9 m³

Length of container = 50 cm

Widht of the container = 120 cm

To Find:

Depth of the container

Formula:

Volume = Length × Width × Depth

Firstly let us change the unit, so every unit will be same.

Volume = 0.9 m³

[ 1 m³ = 10,00,000 cm³ ]

= 9,00,000 cm³

So

Volume = Length × Width × Depth

⟹ 9,00,000 = 50 × 120 × Depth

⟹ 9,00,000 = 6,000 × Depth

⟹ 9,00,000/6,000 = Depth

⟹ 150 = Depth

⟹ Depth = 150 cm

Required Answer:-

Depth of the container = 150 cm

Or

Depth = 150 cm = 150/100 = 1.5 m [ 1 cm = 1/100 m ]

Answered by DüllStâr
98

Question:

The volume of a container is 0.9 m'. If it is 50 cm long and 120 cm wide, then find its depth.

To find:

  • Depth of the container

Given:

  • Length of container = 50 cm

  • Breadth of container = 120 cm

  • Volume of container = 0.9 m³ = 900000 cm³

How?

we know:

1 m = 100cm

so:

 \leadsto \sf0.9 {m}^{3}

 \\

 \leadsto \sf \dfrac{9}{10}  {m}^{3}

 \\

 \leadsto \sf \dfrac{9}{10} \times m \times m \times m

 \\

 \leadsto \sf \dfrac{9}{10} \times 100 \times 100 \times 100

 \\

 \leadsto \sf \dfrac{9}{1\cancel0} \times 100 \times 100 \times 10\cancel0

 \\

 \leadsto \sf9 \times 100 \times 100 \times 10

 \\

 \leadsto \sf900000 \:  {cm}^{3}

Let:

  • Depth (height) = x

 \\

Now we know:

 \bigstar \boxed{ \rm Volume \: of \: cuboid=length \times breadth \times height }

 \\

By using this formula we can find value of height

 \\

  \dashrightarrow\sf Volume \: of \: cuboid=length \times breadth \times height  \\

 \\

  \dashrightarrow\sf900000=x \times 50 \times 120 \\

 \\

  \dashrightarrow\sf \frac{900000}{50 \times 120} =x  \\

 \\

  \dashrightarrow\sf x = \frac{900000}{50 \times 120}\\

 \\

  \dashrightarrow\sf x = \frac{9000\cancel0\cancel0}{5\cancel0 \times 12\cancel0}\\

 \\

  \dashrightarrow\sf x = \frac{9000}{5 \times 12}\\

 \\

  \dashrightarrow\sf x = \frac{9000}{60}\\

 \\

  \dashrightarrow\sf x = \cancel {\frac{9000}{60}}\\

 \\

  \dashrightarrow  \underline{\boxed{\sf x =150\:cm}} \\

\therefore \underline{\sf Depth ~of~container~=150\:cm}\\

Similar questions