Math, asked by heludovilma, 8 months ago

The volume of a cube is increasing at the rate
of 6 cm^3/min. How fast in the surface are increasing
When the length of an edge is 12cm?​

Answers

Answered by Asterinn
6

Given :

  • The volume of a cube is increasing at the rate of 6 cm³/min.

  • length of an edge = 12cm

To find :

  • How fast in the surface area increasing

Formula used :

  • V= a³

  • S= 6 a²

where :-

  • V = Volume of cube

  • S = Surface area of cube

Solution :

The volume of a cube is increasing at the rate of 6 cm³/min.

Which means dv/dt = 6 cm³/min

 \implies \: V =  {a}^{3}

 \implies \:  \dfrac{dV}{dt}  = \dfrac{  d({a}^{3}) }{dt}

\implies \:  \dfrac{dV}{dt}  =3 {a}^{2}  \dfrac{  d({a}) }{dt}

Now put :-

  • dv/dt = 6
  • a = 12

\implies \:  6  =3  \times  {12}^{2}   \times \dfrac{  d({a}) }{dt}

\implies \:  6  =3  \times  {12} \times 12   \times \dfrac{  d({a}) }{dt}

\implies \:   \dfrac{6}{3  \times  {12} \times 12  }   =  \dfrac{  d({a}) }{dt}

\implies \:   \dfrac{1}{3  \times  {2} \times 12  }   =  \dfrac{  d({a}) }{dt}

\implies \:   \dfrac{1}{72  }   =  \dfrac{  d({a}) }{dt}

Now :-

S = 6 {a}^{2}

  \implies\dfrac{dS}{dt}  = \dfrac{d( 6 {a}^{2}) }{dt}

\implies\dfrac{dS}{dt}  = \dfrac{6 \times d( {a}^{2}) }{dt}

\implies\dfrac{dS}{dt}  = 12a \:  \dfrac{d(a)}{dt}

Now put :-

  • da/dt = 1/72
  • a = 12

\implies\dfrac{dS}{dt}  = 12 \times 12  \times  \dfrac{1}{72}

Therefore, ds/dt is rate at which surface area is increasing.

\implies\dfrac{dS}{dt}  =  \dfrac{144}{72}

\implies\dfrac{dS}{dt}  =  2

Answer :

Rate at which surface area increasing = 2 cm²/min.

__________________

\large\bf\blue{Additional-Information}

  • Volume of cylinder = πr²h

  • T.S.A of cylinder = 2πrh + 2πr²

  • Volume of cone = ⅓ πr²h

  • C.S.A of cone = πrl

  • T.S.A of cone = πrl + πr²

  • Volume of cuboid = l × b × h

  • C.S.A of cuboid = 2(l + b)h

  • T.S.A of cuboid = 2(lb + bh + lh)

  • C.S.A of cube = 4a²

  • T.S.A of cube = 6a²

  • Volume of cube = a³

  • Volume of sphere = (4/3)πr³

  • Surface area of sphere = 4πr²

  • Volume of hemisphere = (⅔) πr³

  • C.S.A of hemisphere = 2πr²

  • T.S.A of hemisphere = 3πr²

------------------------------------

  • d(sinx)/dx = cosx

  • d(cos x)/dx = -sin x

  • d(cosec x)/dx = -cot x cosec x

  • d(tan x)/dx = sec²x

  • d(sec x)/dx = secx tanx

  • d(cot x)/dx = - cosec² x

____________________

Similar questions