the volume of a cube of side 2 cm is equal to dash m^3
Answers
GIVEN :-
- Side of the cube = 2cm
TO FIND :-
- Volume of the cube in m³
SOLUTION :-
Where ,
- S is side of the cube
Relation between cm³ and m³ is given by ,
∴ The volume of the cube in m³ is 8 × 10⁻⁶ m³ (or) 0.000008 m³
ADDITIONAL INFO :-
Answer:
GIVEN :-
Side of the cube = 2cm
TO FIND :-
Volume of the cube in m³
SOLUTION :-
\large {\underline {\bold {\boxed{ \bigstar{ \red {\sf{ \: volume \: of \: cube = {s}^{3} }}}}}}}
★volumeofcube=s
3
Where ,
S is side of the cube
\begin{gathered} \implies \sf \: volume \: of \: cube = (2) {}^{3} \\ \\ \implies \sf \: volume \: of \: cube = 2 \times 2 \times 2 \\ \\ \implies \sf \: volume \: of \: cube = 8 \: {cm}^{3} \end{gathered}
⟹volumeofcube=(2)
3
⟹volumeofcube=2×2×2
⟹volumeofcube=8cm
3
Relation between cm³ and m³ is given by ,
\large {\underline {\bold {\boxed {\bigstar {\red {\sf{ \: 1cm {}^{3} = {10}^{ - 6} \times m {}^{3} }}}}}}}
★1cm
3
=10
−6
×m
3
\implies {\underline {\bold {\boxed {\blue {\sf{volume \: of \: cube = 8 \times {10}^{ - 6} \: {m}^{3} }}}}}}⟹
volumeofcube=8×10
−6
m
3
∴ The volume of the cube in m³ is 8 × 10⁻⁶ m³ (or) 0.000008 m³
ADDITIONAL INFO :-
\begin{gathered} \sf(1) \: Total \: surface \: area \: of \: cube \: = 6( {side}^{2} ) \\ \\ \sf(2) \: Lateral \: surface \: area \: of \: cube = 4( {side}^{2}) \\ \\ \sf (3) \: Volume \: of \: cuboid = length \times breadth \times height \\ \\ \sf (4) \: Lateral\: surface\: area \: of \: cuboid = 2 \: height(length + breadth)\end{gathered}
(1)Totalsurfaceareaofcube=6(side
2
)
(2)Lateralsurfaceareaofcube=4(side
2
)
(3)Volumeofcuboid=length×breadth×height
(4)Lateralsurfaceareaofcuboid=2height(length+breadth)